Devoir libre n°1 Correction

Exercice 1

1. Le polynôme $P(X) = X^4 + 3X^2 - 4$ se factorise dans $\mathbb{C}: P(X) = (X-1)(X+1)(X+2i)(X-2i)$ et sa dérivée $P'(X) = 4x^3 + 6X = 4X\left(X + i\sqrt{\frac{3}{2}}\right)\left(X - i\sqrt{\frac{3}{2}}\right)$. L'enveloppe convexe des racines

de P est le rectangle de sommets 1, -1, 2i, -2i et les racines de P' sont $0, i\sqrt{\frac{3}{2}}$ et $-i\sqrt{\frac{3}{2}}$, qui sont bien dans l'enveloppe convexe des racines de P.

Le polynôme $P(X) = X^3 - X^2 + X - 1 = (X - 1)(X + i)(X - i)$ et sa dérivée $P'(X) = 3x^2 - 2X + 1 = 3\left(X - \frac{1 + i\sqrt{2}}{3}\right)\left(X - \frac{1 - i\sqrt{2}}{3}\right)$. L'enveloppe convexe des racines de P est le triangle

de sommets 1, i, -i et les racines de P' sont $\frac{1+i\sqrt{2}}{3}$ et $\frac{1-i\sqrt{2}}{3}$, qui sont bien dans l'enveloppe convexe.

Les racines de $P(X) = X^k - 1$ forme un polygone régulier à k cotés, 0 est l'unique racine de P' qui est le centre du polygone.

Il est facile de remarquer que si $P(x) = ax^2 + bx + c$ est un polynôme du second degré, le zéro de P est la demi-somme des zéros de P.

Remarque : Si un polynôme de degré n à coefficients réels admet n zéros réels distincts

$$x_1 < x_2 < \dots < x_n$$

on voit en utilisant le théorème de Rolle que les zéros du polynôme dérivé sont dans l'intervalle $[x_1, x_n]$.

2. Posons $P=a\prod_{k=1}^n(X-z_k)$ où les z_k sont les racines de P dans $\mathbb C$ non nécessairement deux à deux distinctes. On a

$$P' = \sum_{j=1}^{n} (X - z_1)...(X - z_j)'...(X - z_n) = \sum_{j=1}^{n} \prod_{k \neq j}^{n} (X - z_k) = \sum_{k=1}^{n} \frac{P}{X - z_j},$$

et donc

$$\frac{P'}{P} = \sum_{j=1}^{n} \frac{1}{z - z_j}.$$

En regroupant les fractions de même dénominateur, on obtient la décomposition en élément simple de $\frac{P'}{D}$ à savoir :

$$\frac{P'}{P} = \sum_{i=1}^{k} \frac{n_i}{z - \alpha_i}.$$

3. Si

$$P'(z) = 0$$
 et $P(z) \neq 0$,

$$\sum_{i=1}^r \frac{n_i}{z - \alpha_i} = 0 \quad \text{ou encore} \quad \sum_{i=1}^r n_i \frac{\overline{z} - \overline{\alpha_i}}{|z - \alpha_i|^2} = 0,$$

ce qui s'écrit aussi

$$\left(\sum_{i=1}^{k} \frac{n_i}{|z - \alpha_i|^2}\right) \overline{z} = \sum_{i=1}^{k} \frac{n_i}{|z - \alpha_i|^2} \overline{\alpha_i}.$$

En prenant les conjugués, on obtient

$$\left(\sum_{i=1}^{k} \frac{n_i}{|z - a_i|^2}\right) z = \sum_{i=1}^{k} \frac{n_i}{|z - \alpha_i|^2} \alpha_i.$$

Le cas où z est aussi zéro de P est évident.

4. Soit z une racine de P' qui n'est pas une racine de P. On note $\lambda_i = \frac{\overline{|z - \alpha_i|^2}}{\left(\sum_{i=1}^k \frac{n_i}{|z - a_i|^2}\right)} \in [0, 1]$. On a

donc $\sum_{i=1}^k \lambda_i = 1$, de plus $z = \sum_{i=1}^k \lambda_i \alpha_i$. On voit bien que z est un barycentre à coefficients positifs des α_i .

Exercice 2

Montrons d'abord le résultat préliminaire suivant :

Toute équation polynomiale de degré $n \in \mathbb{N}^*$ dans $\left(\mathbb{Z}/_{pZ}\right)$ admet au plus n solutions distinctes.

D'abord montrons qu'un polynôme P à coefficients dans $Z/_{pZ}$ admettant x pour racine est divisible par (X-x). En effet, par récurrence forte sur le degré, si P est de coefficient dominant α , de degré n, et admet x pour racine, alors $P-\alpha X^{n-1}(X-x)$ est de degré inférieur à celui de P, on peut lui appliquer l'hypothèse de récurrence.

Montrons ensuite par récurrence qu'un polynôme de degré n dans $\mathbb{Z}/p\mathbb{Z}$ admet au plus n racines distinctes.

Il n'y a rien à prouver pour n = 1. Supposons la propriété vérifiée pour n > 0 fixé, montrons la pour n + 1.

Soit donc P un polynôme de degré n+1. Si P n'admet pas de racine, le résultat est évident. Si x est une racine de P, alors on peut écrire P=(X-x)Q, où Q est de degré n-1, et l'hypothèse de récurrence permet alors de conclure.

- **1.** On trouve les ensembles suivants : $C_3 = \{\overline{1}\}$, $C_5 = \{\overline{1}, \overline{4}\}$, $C_7 = \{\overline{1}, \overline{2}, \overline{4}\}$, $C_{11} = \{\overline{1}, \overline{3}, \overline{4}, \overline{5}, \overline{9}\}$.
- **2.** Il est clair que C_p est stable par multiplication et par passage à l'inverse. Donc C_p est un sousgroupe de $\left(\mathbb{Z}/p_{\mathbb{Z}}\right)^*$.
- 3. On a, pour tout x et y de C_p , $f(xy)=(xy)^2=x^2y^2=f(x)f(y)$, donc f est un morphisme de groupes.

- **4.** On a $x^2 = y^2$ si et seulement si (x y)(x + y) = 0. Comme p est premier, Z/pZ est un corps, c'est un anneau intègre, et donc f(x) = f(y) si et seulement si x = y ou x = -y.
- 5. Soit $a \in C_p$, donc il existe $y \in \left(\mathbb{Z}/pZ\right)^*$ tel que $a = y^2$. On alors aussi $a = (-y)^2$, or $y \neq -y$ puisque p est impair, donc a est le carré d'au moins deux éléments de $\left(\mathbb{Z}/pZ\right)^*$. En fait, c'est le carré d'exactement deux éléments, car le polynôme $X^2 a$ est de degré 2, donc admet au plus deux racines dans $\left(\mathbb{Z}/pZ\right)$ (d'après le résultat préliminaire). Puisque $\left(\mathbb{Z}/pZ\right)^*$ possède p-1 éléments, et puisque chaque éléments de C_p est le carré d'execatement deux des ces éléments, on en déduit qu'il y a exactement $\frac{p-1}{2}$ carrés.

Exercice 3

1. Soit $x=\frac{p}{q}$ une racine rationnelle écrite sous forme de fraction irréductible ($p \wedge p=1$) de $P=a_nX^n+\ldots+a_0$, on a alors

$$0 = P\left(\frac{p}{q}\right) = a\frac{p^n}{q^n} + a_{n-1}\frac{p^{n-1}}{q^{n-1}} + \dots + a_0 = \frac{a_np^n + a_{n-1}p^{n-1}q + \dots + a_1pq^{n-1} + a_0q^n}{q^n}$$

Donc:

$$p(a_n p^{n-1} + a_{n-1} p^{n-1} q + \dots + a_1 q^{n-1}) = -a_0 q^n$$

et p divise donc a_0q^n . Comme $\frac{p}{q}$ est irréductible, cela entraine que p divise a_0 . De même q divise a_n .

- 2. Il suffit donc de tester quelles sont les racines de P parmi toutes les fractions irréductibles de la forme un diviseur de a_0 sur un diviseur de a_n (attention à ne pas oublier les diviseurs négatifs!).
 - Si $\frac{p}{q}$ est une racine rationnelle de $P(X) = X^5 X^2 + 1$, alors p divise 1, donc $p \in \{-1,1\}$, de même q divise 1, donc $q \in \{-1,1\}$. On obtient donc deux possibilités 1 et -1, mais 1 et -1 ne sont pas des racines, donc P n'admet pas des racines dans \mathbb{Q} .
 - Soit $\frac{p}{q}$ une racine rationnelle de $P(X) = 2X^4 X^3 + X^2 X + 2$. On a p divise 2 donc vaut ± 1 ou ± 2 , de même q divise 2 donc vaut ± 1 ou ± 2 . On teste donc $1, -1, 2, -2, \frac{1}{2}, \frac{-1}{2}$. La vérification permet de conclure que le polynôme P n'a pas de racines rationnelles.
 - Les diviseurs du coefficient dominant du polynôme $X^3 6X^2 4X 21$ sont -1 et 1. Ceux du coefficient constant sont 1, -1, 3, -3, 7, -7, 21 et -21. Par conséquent, les seuls rationnels susceptibles d'être des racines sont

$$\pm 1, \pm 3, \pm 7$$
 et ± 21 .

En remplaçant x successivement par chacune de ces valeurs, on trouve que la seule qui vérifie l'équation polynomiale est 7.

• • • • • • • • •