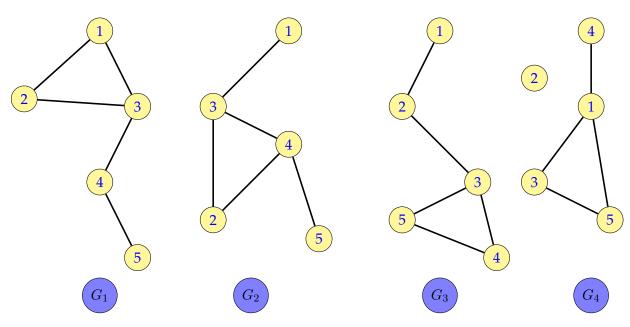
Devoir libre n°12 Correction

Nombre chromatique d'un graphe

1.



- **2.** (a) Il suffit de considérer l'application $\varphi: S_1 \to S_3$ définie par $\varphi(1) = 5$, $\varphi(2) = 4$, $\varphi(3) = 3$, $\varphi(4) = 2$ et $\varphi(5) = 1$. On a bien φ est une bijection et $\forall (s,t) \in S_1, \ \{s,t\} \in A_1 \Leftrightarrow \{\varphi(s),\varphi(t)\} \in A_3$. Donc G_1 et G_2 sont isomorphes.
 - (b) i. On a $\alpha_G(s) = \operatorname{card}\{\{s,t\}/t \in S \text{ et } \{s,t\} \in A\}$. L'application

$$\varphi_s: V_G(s) \to \{\{s,t\}/t \in S \text{ et } \{s,t\} \in A\}$$

définie par $\varphi_s(t) = \{s, t\}$ est une bijection (vérification immédiate), donc

$$\operatorname{card} V_G(s) = \operatorname{card} \{ \{s, t\} / t \in S \text{ et } \{s, t\} \in A \},\$$

ou encore

$$\alpha_G(s) = \operatorname{card}(V_G(s)).$$

- ii. Considérons l'application ψ de $V_G(s)$ dans $V_G(\phi(s))$ définie par $\forall t \in V_G(s), \psi(t) = \phi(t)$.
 - ψ est injective, car ϕ est injective.
 - Soit $t' \in V_G(\phi(s))$ et $t \in S$ tel que $\phi(t) = t'$. On a $\{\phi(s), t'\} = \{\phi(s), \phi(t)\} \in A'$ et comme ϕ est un isomorphisme de graphes entre G et G', alors $\{s, t\} \in A$ et donc $t \in V_G(s)$.

En conclusion, il existe $t \in V_G(s)$ tel que $\psi(t) = t'$. D'où ψ est surjective.

Donc ψ est bijective et par conséquent $\operatorname{card}\left(V_G(s)\right)=\operatorname{card}\left(V_G(\phi(s))\right)$ et d'après la question précédente, on a :

$$\alpha_{G'}(\phi(s)) = \alpha_G(s).$$

(c) Non, en effet, supposons qu'il existe un isomorphisme φ entre G_1 et G_2 . On a :

$$V_{G_1} = \{t \in S_1/\{1, t\} \in A_1\} = \{\{1, 2\}, \{1, 3\}\},\$$

donc $\operatorname{card}(V_{G_1}(1)) = 2$. D'après la question précédente, $\operatorname{card}(V_{G_1}(\varphi(1))) = 2$. Donc nécessairement $\varphi(1) = 2$. Le même raisonnement montre que $\varphi(2) = 2$. Ceci est absurde car φ est une bijection.

- 3. (a) On a $n_G = \operatorname{card} S_G$, donc S_G et $[\![1,n_G]\!]$ ont le même nombre d'éléments, donc il existe une bijection ψ de S_G dans $[\![1,n_G]\!]$. En, particulier, $\forall \{s,t\} \in A_G, s \neq t$ et donc $\psi(s) \neq \psi(t)$, c'est-à-dire ψ est un bon p-coloriage de G et donc $\psi \in B(n_G,G)$, d'où $f_G(n_G) = \operatorname{card} B(n_G,G) \geq 1$ ou encore $n_G \in E(G)$.
 - (b) Soit $p \in E(G)$. Fixons $\varphi_p : E \to [\![1,p]\!]$ un bon p-coloriage. Tout d'abord, comme p+1>p, on a $\varphi_p(x) \in [\![1,p+1]\!]$. On peut donc définir une application $\varphi_{p+1} : E \to [\![1,p+1]\!]$ en posant $\varphi_{p+1}(x) = \varphi_p(x)$. Alors comme $\varphi_{p+1}(x) = \varphi_p(x)$ pour tout $x \in S$, on a :

$$\forall (s,t) \in S^2, \{s,t\} \in A \Rightarrow \varphi_{p+1}(s) \neq \varphi_{p+1}(t).$$

Par suite φ_{p+1} est un bon p+1-coloriage, donc un élément de B(p+1,G). Ceci montre que $p+1\in E(G)$.

(c) E(G) est un sous-ensemble non vide de $\mathbb N$ (il contient n_G). Soit donc θ_G le plus petit élément de E(G) (toute partie finie non vide de $\mathbb N$ admet un plus petit élément). D'où, d'après la question précédente :

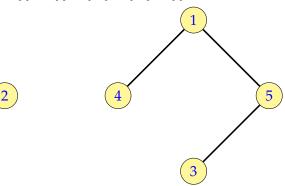
$$E(G) = \mathbb{N} \cap [\theta_G, +\infty[.$$

4. (a) Si $A_G = \emptyset$, alors toute application de S_G dans $[\![1,p]\!]$ est un bon p-coloriage, donc B(p,G) est l'ensemble de toutes les applications de S_G dans $[\![1,p]\!]$. D'où

$$f_G(p) = \operatorname{card} B(p, G) = p^{n_G}.$$

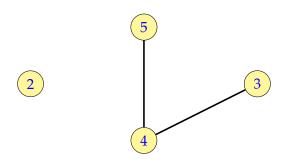
- (b) i. $\bullet R(G_4) = \{1,3\} \cup \{1,4\} \cup \{1,5\} \cup \{3,5\} = \{1,2,4,4\},$ d'où $\sigma(G_4) = 1.$
 - $\{t \in S_4/\{1,t\} \in A_4\} = \{3,4,5\}$, donc $\tau(G_4) = 3$.

ii. •
$$\begin{cases} S_{\lambda(G)} = S_{G_4} = \{1, 2, 3, 4, 5\} \\ A_{\lambda(G_4)} = A_{G_4} \setminus \{\{1, 3\}\} = \{\{1, 4\}, \{1, 5\}, \{3, 5\}\} \end{cases}$$



Graphe $\lambda(G_4)$

$$\begin{array}{l} \text{et} \\ \bullet \left\{ \begin{array}{l} S_{\mu(G)} = \{2,3,4,5\} \\ A_{\lambda(G_4)} = \{\{3,4\},\{3,5\}\} \end{array} \right. \end{array}$$



Graphe $\mu(G_4)$

iii. Il est clair que $\operatorname{card} A_{\lambda(G)} = \operatorname{card} A_G - 1 < \operatorname{card} A_G$. Vérifions d'abord que $A_{\mu(G)}$ est bien un ensemble de paires. Si $\{s,t\} \in A_{\mu(G)}$ et $\kappa(s) = \kappa(t)$, on aurait $\{s,t\} = \{\sigma(G),\tau(G)\}$ ce qui est exclu d'après la définition de $A_{\mu(G)}$. L'application κ induit une surjection de $A_{\lambda(G)}$ sur $A_{\mu(G)}$, il en découle que

$$\operatorname{card} A_{\mu(G)} = \operatorname{card} \{ \{ \kappa(s), \kappa(t) \} / (s, t) \in A_{\lambda(G)} \} \leq \operatorname{card} A_{\lambda(G)} < \operatorname{card} A_G.$$

- iv. A. Les bons p-coloriage de G et les bons p-coloriage de $\mu(G)$ n'ont pas le même domaine de définition, donc $B(p,G) \cap B(p,\mu(G)) = \emptyset$.
 - B. On a $S_{\lambda(G)} = S_G$. Soit ψ un bon p-coloriage de G, donc ψ est une application de S_G dans $[\![1,p]\!]$ qui vérifie

$$\forall (s,t) \in S_G^2, \{s,t\} \in A_G \Rightarrow \psi(s) \neq \psi(t),$$

et comme $A_{\lambda(G)} \subset A_G$, alors

$$\forall (s,t) \in S^2_{\lambda(G)}, \{s,t\} \in A_G \Rightarrow \psi(s) \neq \psi(t).$$

Donc ψ est un bon p-coloriage de $\lambda(G)$. D'où $B(p,G) \subset B(p,\lambda(G))$.

- C. Remarquons que $\psi = \psi \circ \kappa$. Soit $\{s,t\} \in A_{\lambda(G)}$. Alors $\{\kappa(s),\kappa(t)\} \in A_{\mu(G)}$. Comme ψ est un bon p-coloriage pour $\mu(G)$, on a $\psi(\kappa(s)) \neq \psi(\kappa(t))$, c'est-à-dire $\tilde{\psi}(s) \neq \tilde{\psi}(t)$. Ainsi, $\tilde{\psi}$ est un bon p-coloriage pour $\lambda(G) : \tilde{\psi} \in B(p,\lambda(G))$.
- D. Injectivité : Soient $\psi_1, \psi_2 \in B(p,G) \cup B(p,\mu(G))$ tels que $\Gamma(\psi_1) = \Gamma(\psi_2)$.
 - \bullet Si $\psi_1, \psi_2 \in B(p, G)$, alors $\Gamma(\psi_1) = \psi_1$ et $\Gamma(\psi_2) = \psi_2$, donc $\psi_1 = \psi_2$.
 - Si $\psi_1, \psi_2 \in B(p, \mu(G))$, alors $\Gamma(\psi_1) = \tilde{\psi}_1$ et $\Gamma(\psi_2) = \tilde{\psi}_2$, donc $\tilde{\psi}_1 = \tilde{\psi}_2$ et donc $\psi_1(s) = \psi_2(s)$ pour tout $s \neq \sigma(G)$ ceci implique que $\psi_1(s) = \psi_2(s)$ pour tout $s \in S_{\mu(G)}$, donc $\psi_1 = \psi_2$.
 - Si $\psi_1 \in B(p,G)$ et $\psi_2 \in B(p,\mu(G))$ alors nécessairement $\psi_1 \neq \psi_2$ (d'après ?). On a

$$\tilde{\psi}_{\ell}\sigma(G)) = \tilde{\psi}_{2}(\sigma(G)) = \psi_{2}(\tau(G))$$

et si $s \neq \sigma(G)$, $\psi_1(s) = \tilde{\psi_2}(s) = \psi_2(s)$ en particulier

$$\psi_1(\tau(G)) = \psi_2(\tau(G)) = \psi_1(\sigma(G))$$

ce qui est absurde, car $\{\sigma(G), \tau(G)\} \in A_G$, donc $\psi_1(\tau(G)) \neq \psi_1(\tau(G))$. En conclusion, l'application Γ est injective.

Surjectivité : Soit φ un bon p-coloriage de $\lambda(G)$, deux cas sont possibles :

- $\overline{\bullet \varphi(\sigma(G))} \neq \varphi(\tau(G)).$
- $\bullet \ \varphi(\sigma(G)) = \varphi(\tau(G)).$

Si $\varphi(\sigma(G)) \neq \varphi(\tau(G))$, alors φ est un bon p-coloriage de G et donc $\Gamma(\varphi) = \varphi$.

$$\mathrm{Si}\; \varphi(\sigma(G))=\varphi(\tau(G))\text{, alors }\tilde{\varphi}=\varphi\text{, en effet }\left\{\begin{array}{l}\tilde{\varphi}(\sigma(G))=\varphi(\tau(G))\\\tilde{\varphi}(s)=\varphi(s)\;\;\mathrm{si}\;\;s\neq\sigma(G).\end{array}\right.$$

D'où $\tilde{\varphi} = \varphi$ et par conséquent $\tilde{\varphi} = \Gamma(\varphi)$.

En conclusion, Γ est une bijection et par comparaison des cardinaux, on obtient :

$$\operatorname{card} B(p,G) + \operatorname{card} B(p,\mu(G)) = \operatorname{card} B(p,\lambda(G))$$

$$\operatorname{car} B(p,G) \cap B(p,\mu(G)) = \emptyset.$$

v. L'égalité précédente, entre cardinaux, s'écrit encoure sous la forme :

$$f_G(p) + f_{\mu(G)}(p) = f_{\lambda(G)}$$

et ceci $\forall p \in \mathbb{N}^*$. D'où :

$$f_G = f_{\lambda(G)} - f_{\mu(G)}.$$

- **5.** On va procéder par récurrence sur $\operatorname{card} A_G$ (le nombre d'arêtes).
 - Si card $A_G=0$, c'est-à-dire $A_G=\emptyset$, $f_G(p)=p^{n_G}$ (d'après la question 6.)
 - Supposons maintenant card $A \ge 1$. D'après ce qui précède

$$f_G = f_{\lambda(G)} - f_{\mu(G)}.$$

Les graphes $\lambda(G)$ et $\mu(G)$ contiennent tous deux $\operatorname{card} A - 1$ arêtes. D'après l'hypothèse de récurrence, il existe des entiers $a_0, a_1, ..., a_{n_G}$ tels que

$$f_{\lambda(G)}(p) = \sum_{k=0}^{n_G} a_k p^k$$
, (card $S_g = \operatorname{card} S_{\lambda(G)} = n_G$)

avec $a_{n_G} \neq 0$.

De même , il existe des entiers $b_0, b_1, ..., b_{n_G-1}$ tels que

$$f_{\lambda(G)}(p) = \sum_{k=0}^{n_G-1} b_k p^k$$
, (card $S_g = \text{card } S_{\mu(G)} = n_G - 1$)

avec $b_{n_G-1} \neq 0$. D'où

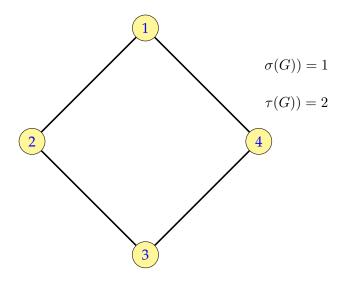
$$f_G(p) = a_{n_G} p^{n_G} + \sum_{k=1}^{n_G - 1} (a_k - b_k) p^k.$$

Donc f_G est une fonction polynomiale en p de degré n_G .

- **6.** Si ϕ est un isomorphisme de G sur G', alors on vérifie que :
 - \square Si ψ' est un bon p-coloriage de G', $\psi' \circ \phi$ est un bon p-coloriage de G.
 - \square Si ψ est un bon p-coloriage de G, $\psi \circ \phi^{-1}$ est un bon p-coloriage de G'.

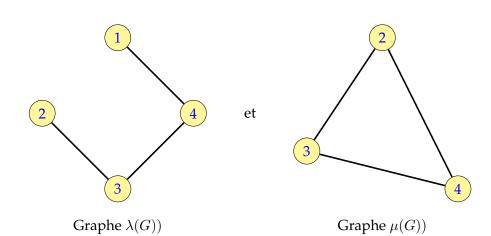
L'application $\psi \mapsto \psi \circ \phi^{-1}$ définit donc une bijection de B(p,G) vers B(p,G'), qui ont donc même nombre d'éléments. Par suite $f_{G'} = f_G$ si G et G' sont deux graphes isomorphes.

7. (a)

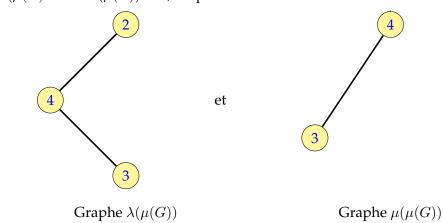


Graphe G

D'où



Ensuite, $\sigma(\mu(G)=2$ et $\tau(\mu(G))=3$, ce qui donne :



D'après la relation de la question précédente, on a :

$$f_G(p) = f_{\lambda(G)}(p) - f_{\mu(G)}(p)$$

et

$$f_{\mu(G)}(p) = f_{\lambda(\mu(G))}(p) - f_{\mu(\mu(G))}(p)$$

D'où

$$f_G(p) = f_{\lambda(G)}(p) - f_{\lambda(\mu(G))}(p) + f_{\mu(\mu(G))}(p).$$

Soit φ un bon p-coloriage de $\lambda(G)$, il y a p choix possibles pour $\varphi(1)$, p-1 choix pour $\varphi(2)$, $\varphi(3)$ et $\varphi(4)$. D'où

$$f_{\lambda(G)}(p) = p(p-1)^3.$$

De même

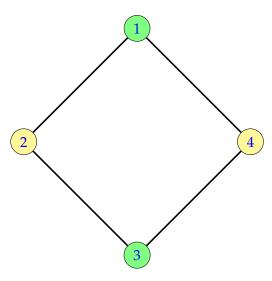
$$f_{\lambda(\mu(G))}(p) = p(-1)^2$$

et $f_{\mu(\mu(G))}(p) = p(p-1)$ ce qui donne :

$$f_G(p) = p(p-1)^3 - p(p-1)^2 + p(p-1) = p(p-1)(p^3 - 3p + 3).$$

(b) On a $f_G(1) = 0$ et $f_G(2) \neq 0$, d'où :

$$\theta_G = \min\{p \in \mathbb{N}^* / f_G(p) \neq 0\} = 2.$$



Remarque : Le nombre minimum de couleurs nécessaire pour colorier chaque sommet du graphe G de façon que deux sommets adjacents quelconques soient de couleurs différentes est 2, c'est le nombre chromatique θ_G .

•••••