Devoir surveillé *n*°4 Correction

Exercice

1. Pour tout $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, on a :

$$u_n = \int_0^{\pi} \cos(\alpha x) \cos(nx) dx = \frac{1}{2} \int_0^{\pi} \left[\cos(\alpha - n)x + \cos(\alpha + n) \right] dx$$
$$= \frac{1}{2} \left[\frac{1}{\alpha - n} \sin(\alpha - n)x \right]_0^{\pi} + \frac{1}{2} \left[\frac{1}{\alpha + n} \sin(\alpha + n)x \right]_0^{\pi}$$
$$= \frac{1}{2} \frac{1}{\alpha - n} \sin(\alpha - n)\pi + \frac{1}{2} \frac{1}{\alpha + n} \sin(\alpha + n)\pi$$
$$= \frac{(-1)^n}{\alpha^2 - n^2} \alpha \sin(\alpha \pi).$$

D'où $|u_n| = \left| \frac{(-1)^n \alpha \sin(\alpha \pi)}{\alpha^2 - n^2} \right| \simeq \frac{|\alpha \sin(\alpha \pi)|}{n^2}$, donc la série $\sum_{n \in \mathbb{N}^*} u_n$ converge car elle converge absolument.

2. On a $a_n(x) = \operatorname{Re}\left(\sum_{p=1}^n (e^{ix})^p\right)$. Pour $x \neq 2k\pi$ avec $k \in \mathbb{Z}$, $e^{ix} \neq 1$ et donc :

$$\sum_{p=1}^{n} (e^{ix})^p = e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}}$$
$$= e^{i\frac{(n+1)x}{2}} \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

D'où
$$a_n(x) = \cos \frac{(n+1)x}{2} \frac{\sin \left(\frac{nx}{2}\right)}{\sin \left(\frac{x}{2}\right)} = -\frac{1}{2} + \frac{1}{2} \frac{\sin (2n+1)\frac{x}{2}}{\sin \left(\frac{x}{2}\right)}.$$
 Donc $C_1 = -C_2 = -\frac{1}{2}.$

3. Il est évident que F est de classe \mathscr{C}^1 sur $]0,\pi]$. De plus $\lim_{x\to 0^+} F(x) = \lim_{x\to 0^+} \frac{-\alpha \sin(\alpha x)}{\frac{1}{2}\cos\left(\frac{x}{2}\right)} = 0 = F(0)$. Donc F est continue en 0. D'autre part,

$$\lim_{x \to 0^+} \frac{F(x) - F(0)}{x} = \lim_{x \to 0^+} \frac{\cos(\alpha x) - 1}{x \sin(\frac{x}{2})} = \lim_{x \to 0^+} \frac{-\frac{(\alpha x)^2}{2} + o(x^2)}{\frac{x^2}{2} + o(x^2)} = -\alpha^2.$$

En conclusion, F est de classe \mathscr{C}^1 sur $[0,\pi]$.

4. Soit $n \in \mathbb{N}^*$, on a :

$$\begin{split} \sum_{p=1}^{n} u_{p} &= \int_{0}^{\pi} \cos(\alpha x) \sum_{p=1}^{n} \cos(px) \mathrm{d}x = \int_{0}^{\pi} \cos(\alpha x) a_{n}(x) \mathrm{d}x \\ &= \int_{0}^{\pi} \cos(\alpha x) \left(-\frac{1}{2} + \frac{1}{2} \frac{\sin(2n+1)\frac{x}{2}}{\sin\frac{x}{2}} \right) \mathrm{d}x \\ &= -\frac{1}{2} \int_{0}^{\pi} \cos(\alpha x) \mathrm{d}x + \frac{1}{2} \int_{0}^{\pi} \frac{\cos(\alpha x) \sin(2n+1)\frac{x}{2}}{\sin\frac{x}{2}} \mathrm{d}x \\ &= -\frac{1}{2} \left[\frac{1}{\alpha} \sin(\alpha x) \right]_{0}^{\pi} + \frac{1}{2} \int_{0}^{\pi} \frac{\cos(\alpha x) - 1}{\sin\frac{x}{2}} \sin(2n+1)\frac{x}{2} \mathrm{d}x + \frac{1}{2} \int_{0}^{\pi} \frac{\sin(2n+1)\frac{x}{2}}{\sin\frac{x}{2}} \mathrm{d}x \\ &= -\frac{\sin(\alpha \pi)}{2\alpha} + \frac{1}{2} \int_{0}^{\pi} F(x) \sin(2n+1)\frac{x}{2} \mathrm{d}x + \frac{1}{2} \int_{0}^{\pi} \frac{\sin(2n+1)\frac{x}{2}}{\sin\frac{x}{2}} \mathrm{d}x \\ &= -\frac{\sin(\alpha \pi)}{2\alpha} + \frac{1}{2} I_{n} + \frac{1}{2} J_{n}. \end{split}$$

5. On a, pour tout $n \in \mathbb{N}^*$:

$$I_n = \int_0^{\pi} F(x)\sin(2n+1)\frac{x}{2}dx = \left[-\frac{F(x)\cos(2n+1)\frac{x}{2}}{\frac{2n+1}{2}}\right]_0^{\pi} + \frac{2}{2n+1}\int_0^{\pi} F'(x)\cos(2n+1)\frac{x}{2}dx$$
$$= \frac{2}{2n+1}\int_0^{\pi} F'(x)\cos(2n+1)\frac{x}{2}dx$$

D'où $|I_n| \le \frac{2M\pi}{2n+1}$ où $M = \sup_{x \in [0,\pi]} |F'(x)|$. Donc $\lim_{n \to \infty} I_n = 0$.

6. On a, pour tout $n \in \mathbb{N}$:

$$J_{n+1} - J_n = \int_0^{\pi} \frac{\sin(2n+3)\frac{x}{2} - \sin(2n+1)\frac{x}{2}}{\sin\frac{x}{2}} dx$$
$$= \int_0^{\pi} \frac{2\sin\frac{x}{2}\cos(n+1)x}{\sin\frac{x}{2}} dx$$
$$= 2\int_0^{\pi} \cos(n+1) dx = 0$$

D'où $\forall n \in \mathbb{N}, \ J_n = J_0 = \pi.$

7. Pour tout $n \in \mathbb{N}^*$, on a $\sum_{n=1}^{\infty} u_n = -\frac{\sin(\alpha \pi)}{2\alpha} + \frac{1}{2}I_n + \frac{1}{2}J_n$. D'où

$$\sum_{n=1}^{n} \frac{(-1)^{p} \alpha \sin(\alpha \pi)}{\alpha^{2} - p^{2}} = -\frac{\sin(\alpha \pi)}{2\alpha} + \frac{1}{2} I_{n} + \frac{1}{2} J_{n}.$$

Quand n tend vers l'infini, on obtient :

$$\sum_{p=1}^{\infty} \frac{(-1)^p \alpha \sin(\alpha \pi)}{\alpha^2 - p^2} = \frac{\pi}{2} - \frac{\sin(\alpha \pi)}{2\alpha}$$

ou encore

$$\sum_{p=1}^{\infty} \frac{2(-1)^{n-1}\alpha}{n^2 - \alpha^2} = \frac{\pi}{\sin(\alpha\pi)} - \frac{1}{\alpha}.$$

Problème

Partie I : Propriétés élémentaires

1. (a) On a $\forall n \in \mathbb{N}$, $\left\| \frac{u^n}{n!} \right\| \leq \frac{\|u\|^n}{n!}$ et la série $\sum_{n \in \mathbb{N}} \frac{\|u\|^n}{n!}$ converge, donc la série $\sum_{n \in \mathbb{N}} \frac{u^n}{n!}$ converge absolument et comme $\mathscr{L}(E)$ est de dimension finie, alors la série converge dans $\mathscr{L}(E)$

 $\operatorname{Soit} r > 0 \text{ et } u \in \mathscr{L}(E) \text{ tel que } \|u\| \leq r \text{, on a } \left\|\frac{u^n}{n!}\right\| \leq \frac{r^n}{n!}. \text{ Donc la série } \sum_{n \in \mathbb{N}} \frac{u^n}{n!} \text{ converge normalement } \left\|\frac{u^n}{n!}\right\| \leq \frac{r^n}{n!}.$

et donc uniformément sur tout compact de $\mathscr{L}(E)$ et comme les applications $u\mapsto \frac{u^n}{n!}$ sont continues, alors exp est continue sur tout compact de $\mathscr{L}(E)$, donc elle est continue sur $\mathscr{L}(E)$.

(b) Pour tout $n \in \mathbb{N}$ et tout $a \in \mathcal{L}(E)$ on note $S_n(x) = \sum_{k=0}^n \frac{a^k}{k!}$. Comme u et v commutent, on a :

$$\frac{(u+v)^n}{n!} = \sum_{i+j=k} \frac{\mathbf{C}_k^i}{k!} u^i v^j = \sum_{i+j=k} \frac{u^i}{i!} \frac{v^j}{j!}.$$

D'autre part,

$$||S_{n}(u+v) - S_{n}(u)S_{n}(v)|| = \left\| \sum_{k=0}^{n} \frac{(u+v)^{k}}{k!} - \sum_{i=0}^{n} \frac{u^{i}}{i!} \sum_{j=0}^{n} \frac{v^{j}}{j!} \right\|$$

$$= \left\| \sum_{k=0}^{n} \sum_{i+j=k}^{n} \frac{u^{i}}{i!} \frac{v^{j}}{j!} - \sum_{1 \leq i,j \leq n} \frac{u^{i}}{i!} \frac{v^{j}}{j!} \right\|$$

$$= \left\| \sum_{n+1 \leq i+j \leq 2n} \frac{u^{i}}{i!} \frac{v^{j}}{j!} \right\| \leq \sum_{n+1 \leq i+j \leq 2n} \frac{||u||^{i}}{i!} \frac{||v||^{j}}{j!}$$

$$\leq \sum_{k=0}^{n} \frac{(||a|| + ||b||)^{k}}{k!} - \sum_{i=0}^{n} \frac{||u||^{i}}{i!} \sum_{j=0}^{n} \frac{||v||^{j}}{j!}.$$

Lorsque n tend vers l'infini, ce dernier terme tend vers $e^{\|u+v\|}-e^{\|u\|}e^{\|v\|}=0$, donc

$$\lim_{n \to \infty} \left[S_n(u+v) - S_n(u) S_n(v) \right] = 0,$$

d'où $\exp(u+v) = \exp(u) \exp(v)$. On a de même $\exp(u+v) = \exp(v+u) = \exp(v) \exp(u)$. En particulier, $\forall u \in \mathcal{L}(E)$, $\exp(u)$ est inversible dans $\mathcal{L}(E)$ et $\exp(u)^{-1} = \exp(-u)$, donc $\exp(\mathcal{L}(E)) \subset \operatorname{GL}(E)$.

- (c) Par définition $\exp(u) = \lim_{\substack{n \to \infty \\ n \to \infty}} S_n(u)$ et comme $S_n(u) \in \mathbb{C}[u]$ et $\mathbb{C}[u]$ de dimension finie, alors $\mathbb{C}[u]$ est un fermé et donc $\lim_{\substack{n \to \infty \\ n \to \infty}} S_n(u) = \exp(u) \in \mathbb{C}[u]$.
- (d) Il est clair que φ_v est linéaire et comme $\dim \mathcal{L}(E)$ est finie, alors φ_v est continue. On peut vérifier facilement que $\forall k \in \mathbb{N}$, $(v^{-1}uv)^k = v^{-1}u^kv$, ce qui entraine :

$$\begin{split} \exp(v^{-1}uv) &= \lim_{n \to \infty} \sum_{k=0}^{n} \frac{v^{-1}u^{k}v}{k!} \\ &= \lim_{n \to \infty} \left[v^{-1} \left(\sum_{k=0}^{n} \frac{u^{k}}{k!} \right) v \right] \\ &= v^{-1} \left[\lim_{n \to \infty} v^{-1} \left(\sum_{k=0}^{n} \frac{u^{k}}{k!} \right) \right] v \ \textit{par continuit\'e de } \varphi_{v} \\ &= v^{-1} \exp(u)v \end{split}$$

(e) Notons $\lambda_1, \lambda_2, ..., \lambda_n$ les valeurs propres de u, u étant trigonalisable, il existe P inversible telle que :

$$\operatorname{Mat}(u) = P \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} P^{-1}$$

Donc $\operatorname{Sp}(\exp(u)) = \{e^{\lambda_1}, e^{\lambda_2}, ..., e^{\lambda_n}\}$, en particulier

$$\det\left(\exp(u)\right) = \prod_{i=1}^{n} e^{\lambda_i} = e^{\sum_{i=1}^{n} \lambda_i} = e^{\operatorname{tr}(u)}.$$

2. Supposons qu'il existe A tel que $B = \exp(A)$. On sait que, d'après 1.e), $\det(\exp(A) = e^{\operatorname{tr}(A)} \in \mathbb{R}^+$, car A est une matrice à coefficients réels, or $\det(\exp(A)) = \det B = -1 < 0$ ce qui est absurde. Donc il n'existe aucune matrice réelle A telle que $B = \exp(A)$.

3.
$$\bullet A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. D'où $\exp(A) = I + A = A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

$$\bullet \text{ De même } B = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), B^2 = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right). \text{ D'où } \exp(B) = I + B = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right).$$

•
$$A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $(A + B)^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$ On peut vérifier par récurrence que $\forall p \in \mathbb{N}$, $(A + B)^{2p} = I_2$ et $(A + B)^{2p+1} = A + B$, d'où :

$$\exp(A+B) = \sum_{n=0}^{\infty} \frac{(A+B)^n}{n!} = \sum_{p=0}^{\infty} \frac{(A+B)^{2p}}{p!} + \sum_{p=0}^{\infty} \frac{(A+B)^{2p+1}}{(2p+1)!}$$

$$= \left(\sum_{n=0}^{\infty} \frac{1}{(2p)!}\right) I_2 + \left(\sum_{p=0}^{\infty} \frac{1}{(2p+1)!}\right) (A+B)$$

$$= \operatorname{ch}(1) I_2 + \operatorname{sh}(1) (A+B)$$

$$= \left(\begin{array}{cc} \operatorname{ch}(1) & \operatorname{sh}(1) \\ \operatorname{sh}(1) & \operatorname{ch}(1) \end{array}\right).$$

•
$$\exp(A)\exp(B) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\bullet \exp(B) \exp(A) = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right)$$

Partie II : Surjectivité de exp dans le cas complexe

A-Cas où A est diagonalisable

- **1.** Soit $z \in \mathbb{C}^*$, alors $z = |z| \cdot \frac{z}{|z|} = |z|e^{i\theta}$. $|z| \in \mathbb{R}^{+*}$, donc il existe r > 0 tel que $|z| = e^r$. D'où $z = e^{r+i\theta} = e^{z'}$ avec $z' = r + i\theta$.
- 2. (a) Puisque dim $E = \dim \mathbb{R}^{n+1}$, alors l'application linéaire Φ est un isomorphisme si, et seulement si, Φ est injective.

Soit $P \in E$ tel que $\varphi(P) = 0$, alors $P(\lambda_i) = 0$ pour tout $1 \le i \le r$, donc, P étant de degré r et admettant r racines, est nulle. Donc $\ker \varphi = \{0\}$. L'application est donc bijective. L'unique polynôme L, antécédent de $(\mu_1, \mu_2, ..., \mu_r)$ vérifie $L(\lambda_i) = \mu_i$ pour tout $i \in \{1, 2, ..., r\}$.

- (b) i. Il est clair que $l_i(\lambda_i) = 1$ et $l_i(\lambda_j) = 0$ si $i \neq j$.
 - ii. Les polynômes l_i forment une base de $\mathbb{R}_{r-1}[X]$, donc il existe des scalaires $\beta_1,\beta_2,...,\beta_r$ tel que $L=\sum_{i=1}^r \beta_i l_i$. D'après la question précédente $\mu_i=L(\lambda_i)=\beta_i$ pour tout $i\in\{1,2,...,r\}$.
- **3.** *A* étant diagonalisable, donc il existe $P \in GL(E)$ tel que

$$A = P \begin{pmatrix} \lambda_1 I_{\alpha_1} & & & \\ & \lambda_2 I_{\alpha_2} & & \\ & & \ddots & \\ & & & \lambda_r I_{\alpha_r} \end{pmatrix} P^{-1}$$

Soit, grâce à la surjectivité de $\exp: \mathbb{C} \to \mathbb{C}^*$, $\mu_i \in \mathbb{C}$ tel que $\lambda_i = e^{\mu_i}$, $1 \le i \le r$. D'où

$$A = P \begin{pmatrix} e^{\mu_1} I_{\alpha_1} & & & & \\ & e^{\mu_2} I_{\alpha_2} & & & \\ & & \ddots & & \\ & & & e^{\mu_r} I_{\alpha_r} \end{pmatrix} P^{-1} = \sum_{k=0}^{\infty} P \begin{pmatrix} \frac{\mu_1^k}{k!} I_{\alpha_1} & & & & \\ & \frac{\mu_2^k}{k!} I_{\alpha_2} & & & \\ & & & \ddots & & \\ & & & \frac{\mu_r^k}{k!} I_{\alpha_r} \end{pmatrix} P^{-1}$$

On sait qu'il existe $L \in \mathbb{C}_{r-1}[X]$ tel que $\mu_i = L(\lambda_i)$ n $1 \le i \le r$. D'où :

$$A = \sum_{k=0}^{\infty} P \begin{pmatrix} \frac{L(\lambda_1)^k}{k!} I_{\alpha_1} & & & \\ & \frac{L(\lambda_2)^k}{k!} I_{\alpha_2} & & \\ & & \ddots & \\ & & & \frac{L(\lambda_r)^k}{k!} I_{\alpha_r} \end{pmatrix} P^{-1} = \exp(L(A).$$

B-Cas où $A = I_n + N$ où N est nilpotente

- 4. Posons, pour tout $t \in \mathbb{R}$, $g(t) = \sum_{n=0}^{\infty} g_n(t)$ avec $g_n(t) = \frac{f(t)^n}{n!}$. Les g_n sont dérivables sur \mathbb{R} et $g'_n(t) = f'(t) \frac{f^{(n-1)}(t)}{(n-1)!}$. De plus si r > 0, alors il existe M, M' > 0 tels que $\|g'_n t\| \le M' \frac{M^{n-1}}{(n-1)!}$ ($M = \sup_{t \in [-r,r]} \|f(t)\|$ et $M' = \sup_{t \in [-r,r]} \|f'(t)\|$). Donc on peut conclure que la série des dérivées $\sum g'_n$ converge uniformément sur tout compact de \mathbb{R} , donc g est dérivable sur \mathbb{R} et $\forall t \in \mathbb{R}$, $g'(t) = \sum_{n=1}^{\infty} g'_n(t)$.
- 5. D'après la question précédente, l'application g est dérivable sur \mathbb{R} , et pour tout $t \in \mathbb{R}$, on a :

$$g'(t) = \exp(f(t))f'(t) = \exp(f(t))\sum_{k=1}^{n-1} (-1)^{k-1}t^{k-1}N^k.$$

g'(t) est un polynôme en N (la question 1.c)), d'où :

$$(I_n + tN)g'(t) = \exp(f(t)) \left(\sum_{k=1}^{n-1} (-1)^{k-1} t^{k-1} N^k + \sum_{k=1}^{n-1} (-1)^{k-1} t^k N^{k+1} \right)$$
$$= \exp(f(t))N.$$

Donc

$$Ng'(t) + (I_n + tN)g''(t) = \exp f(t)f'(t)N = Ng'(t),$$

d'où

$$(I_n + tN)g''(t) = 0$$

ou encore

$$g''(t) = 0.$$

Car I_n+tN est inversible (tN est nilpotente). Donc g' est constante sur \mathbb{R} et donc $\forall t \in \mathbb{R}$, g't)=g'(0)=N. Or $g(0)=I_m$, alors $g(t)=I_n+tN$.

6. On a $g(1) = I_n + N = \exp f(1) = \exp D$.

C-A est quelconque

- 7. On sait que $\operatorname{sp}(D) = \operatorname{sp}(A) \subset \mathbb{R}^*$, donc D est inversible.
- 8. D étant diagonalisable, donc il existe P inversible et D' tels que $D = \exp(P(D))$. De même il existe Q inversible tels que $I_n + D^{-1}N = \exp(D^{-1}N)$. D'où

$$A = \exp(P(D)) \exp(D^{-1}N) = \exp(B),$$

où $B=P(D)+D^{-1}N$. D^{-1} est un polynôme en D, donc en A. D'où $B\in\mathbb{C}[A]$.

D-Applications

- 9. Soit $A \in GL_n(\mathbb{R})$. Si $A = \exp(A')$ avec $A' \in \mathcal{M}_n(\mathbb{R})$, alors $A = B^2$ où $B = \exp\left(\frac{A}{2}\right)$. Réciproquement, s'il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = B^2$, alors $B \in GL_n(\mathbb{R}) \subset GL_n(\mathbb{C})$, donc il existe $P \in \mathbb{C}[X]$ tel que $B = \exp(P(B))$, d'où $\overline{B} = \exp(\overline{P}(B))$ et par suite $A = B^2 = B\overline{B} = \exp(P(B) + \overline{P}(B)) = \exp((P + \overline{P})(B))$ avec $(P + \overline{P})(B) \in \mathcal{M}_n(\mathbb{R})$.
- 10. Soit $A, A' \in GL_n(\mathbb{C})$, alors il existe $B, B' \in \mathcal{M}_n(\mathbb{C})$ tels que $A = \exp(B)$ et $A' = \exp(B')$. Alors, $\forall t \in [0, 1]$, $t \to \exp((1 t)B + tB') \in GL_n(\mathbb{C})$ est un chemin continu de A vers A' dans $GL_n(\mathbb{C})$.

• • • • • • • •