CNC - Corrigé de Mathématiques II - Filière MP

Session 2022

Par M.TARQI

N'hésitez pas de me signaler les erreurs rencontrées¹.

Exercice

Construction d'une base orthonormée d'un sous-espace vectoriel de \mathbb{R}^n

0.1 Structure de H

- 0.1.1 Il est clair que l'application ψ est linéaire de \mathbb{R}^n vers \mathbb{R} , de plus $\varphi(1,0,...,0)=1\neq 0$. Donc il s'agit bien d'une forme linéaire non nulle.
- 0.1.2 On remarque que $H=\ker\psi$, donc H est un sous-espace vectoriel de \mathbb{R}^n . Plus précisément H le noyau d'une forme linéaire non nulle, donc c'est un hyperplan de \mathbb{R}^n et par conséquent $\dim H=n-1$.
- 0.2 On vérifie facilement que $\psi(v_k)=0$ pour tout $k\in [1,n-1]$, donc les vecteurs v_k sont des vecteurs de H.

Soit maintenant $\lambda_1, \lambda_2, ..., \lambda_{n-1}$ des réels tels que $\sum_{k=1}^{n-1} \lambda_k v_k = 0$, donc:

$$\sum_{k=1}^{n-1} \lambda_k e_k - \sum_{k=1}^{n-1} \lambda_k e_{k+1} = \sum_{k=1}^{n-1} \lambda_k e_k - \sum_{k=2}^{n} \lambda_{k-1} e_k = \lambda_1 e_1 + \sum_{k=2}^{n-1} (\lambda_k - \lambda_{k-1}) e_k - \lambda_{n-1} e_n = 0.$$

Comme la famille $(e_1,e_2,...,e_n)$ est libre, alors $\lambda_1=\lambda_{n-1}=0$ et $\forall k\in [\![2,n-2]\!],$ $\lambda_k-\lambda_{k-1}=0$, ce qui donne finalement $\lambda_1=\lambda_2=...=\lambda_{n-1}=0$.

Comme le sous-espace H est de dimension n-1, la famille $(v_1, v_2, ..., v_{n-1})$ est alors une base de H.

0.3 Construction d'une base orthogonale de H

0.3.1 Soit $(j,k) \in [1, n-1]^2$, on a:

$$(v_j|v_k) = (e_j - e_{j+1}|e_k - e_{k+1}) = (e_j|e_k) - (e_j|e_{k+1}) - (e_{j+1}|e_k) + (e_{j+1}|e_{k+1}).$$

- \bullet Si k=j, alors $j \neq k+1$ et $k \neq j+1$, donc $(v_j|v_k)=2$.
- Si $k \notin \{j-1, j, j+1\}$, alors $(v_j|v_k) = 0$.
- Si $k \in \{ j-1, j, j+1 \}$, on trouve $(v_j|v_k) = -1$.
- 0.3.2 Formules de cours
- 0.3.3 Détermination de ε_k pour $k \in \{2,...,n-1\}$

¹medtarqi@yahoo.fr

(i) Soit $k \in \{2,...,n-1\}$ fixé. Pour tout $l \in \{1,2,...,k-1\}$, on a:

$$0 = (\varepsilon_k | v_l) = (v_k | v_l) - \sum_{j=1}^{k-1} (v_j | v_l) \alpha_j$$

Ceci est équivalent au système $A_k X = B_k$ où $A_k = ((v_j|v_l))_{1 \le j,l \le k-1}, X = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_{k-1} \end{pmatrix}$ et

$$B_k = \begin{pmatrix} (v_1|v_k) \\ \vdots \\ (v_{k-1}|v_k) \end{pmatrix}.$$

(ii) D'après les calculs de la question [0.3.1], on obtient

$$A_k = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & -1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2 & -1 \\ 0 & 0 & 0 & \dots & -1 & 2 \end{pmatrix}, \ B_k = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix}.$$

(iii) On remarque que $x_2=2x_1$ et la deuxième équation donne $x_3=2x_2-x_1=4x_1-x_1=3x_1$. Montrons donc par récurrence que $x_i=ix_1$ pour tout $i\in [\![1,k-1]\!]$, c'est trivialement vérifié pour i=1. Supposons que $x_i=ix_1$ pour $i\leq j$, on écrit alors la j-ème équation, on obtient:

$$-(j-1)x_1 + 2jx_1 - x_{j+1} = 0 \Leftrightarrow x_{j+1} = (j+1)x_1.$$

Ce qui démontre le résultat.

La dernière équation nous donne $-(k-2)x_1+2(k-1)x_1=-1$, donc $x_1=\frac{-1}{k}$. D'où la solution générale de $AX_k=B_k$:

$$X = \frac{-1}{k} \begin{pmatrix} 1\\2\\3\\\vdots\\k-2\\k-1 \end{pmatrix}$$

En reportant dans l'expression de ε_k , on obtient:

$$\varepsilon_{k} = v_{k} - \sum_{j=1}^{k-1} \left(\frac{-1}{k}\right) v_{j}$$

$$= e_{k} - e_{k+1} + \frac{1}{k} \sum_{j=1}^{k-1} j(e_{j} - e_{j+1})$$

$$= e_{k} - e_{k+1} + \frac{1}{k} \sum_{j=1}^{k-1} je_{j} - \frac{1}{k} \sum_{j=1}^{k-1} je_{j+1}$$

$$= e_{k} - e_{k+1} + \frac{1}{k} \sum_{j=1}^{k-1} je_{j} - \frac{1}{k} \sum_{j=2}^{k} (j-1)e_{j}$$

$$= e_{k} - e_{k+1} + \frac{e_{1}}{k} + \frac{1}{k} \sum_{j=2}^{k-1} (j-j+1)e_{j} - \frac{k-1}{k}e_{k}$$

$$= \frac{1}{k} \sum_{j=1}^{k} e_{j} - e_{k+1}$$

$$= \left(\frac{1}{k}, \dots, \frac{1}{k}, -1, \dots, 0\right)$$

 $0.4 \text{ La famille } \left(\frac{\varepsilon_1}{\|\varepsilon_1\|}, \frac{\varepsilon_2}{\|\varepsilon_2\|}, ..., \frac{\varepsilon_{n-1}}{\|\varepsilon_{n-1}\|}\right) \text{ avec } \|\varepsilon_k\|^2 = \underbrace{\frac{1}{k^2} + \frac{1}{k^2} + ... + \frac{1}{k^2}}_{k \text{ fois}} + 1 = \frac{1}{k} + 1 \text{ est une base orthonormée de } H.$

Problème

Étude des morphismes de \mathbb{C} -algèbre $\mathscr{M}_n(\mathbb{C})$

Première partie:

Résultats préliminaires sur les matrices C_n et D_n

1.1 Étude des matrices C_3 et D_3

1.1.1
$$C_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $D_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$
1.1.2 On a $C_3^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ et $C_3^3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = I_3$.
$$D_3^3 = \begin{pmatrix} 1^3 & 0 & 0 \\ 0 & j^3 & 0 \\ 0 & 0 & (j^2)^3 \end{pmatrix} = I_3 \text{ (j est une racine 3-ème de l'unité)}.$$

$$D_3C_3 = \begin{pmatrix} 0 & 0 & 1 \\ j & 0 & 0 \\ 0 & j^2 & 0 \end{pmatrix}$$
 et $C_3D_3 = \begin{pmatrix} 0 & 0 & j^2 \\ 1 & 0 & 0 \\ 0 & j & 0 \end{pmatrix}$, donc $D_3C_3 = jC_3D_3$.

1.1.3 Soient α , β et γ des scalaires tels que $\alpha I_3 + \beta D_3 = \gamma D_3^2 = 0$, on obtient donc le système:

$$\begin{cases} \alpha + \beta + \gamma &= 0 \\ \alpha + \beta j + \gamma j^2 &= 0 \\ \alpha + \beta j^2 + \gamma j^4 &= 0 \end{cases}.$$

C'est un système de Vandermonde, puisque la matrice associée s'écrit: $V(1,j,j^2) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j^4 \end{pmatrix}$

qui est inversible, donc nécessairement $\alpha=\beta=\gamma=0$ et par conséquent la famille (I_3,D_3,D_3^2) est libre.

Si F_3 désigne l'espace vectoriel de matrices diagonales, alors on sait que $F_3 = \text{Vect}(E_{11}, E_{22}, E_{33})$ où $(E_{ij})_{1 \le i,j \le 3}$ désigne la base canonique $\mathscr{M}_3(\mathbb{C})$, donc dim $F_3 = 3$ et comme $\text{Vect}(I_3, D_3, D_3^2)$ est sous-espace de F_3 , alors il y a égalité:

$$F_3 = \text{Vect}(I_3, D_3, D_3^2).$$

1.1.4

$$\chi_{D}(x) = \begin{vmatrix} x & 0 & -1 \\ -1 & x & 0 \\ 0 & -1 & x \end{vmatrix} \text{ (définition de } \chi_{D})$$

$$= \begin{vmatrix} x - 1 & 0 & -1 \\ x - 1 & x & 0 \\ x - 1 & -1 & x \end{vmatrix} (L_{1} \leftarrow L_{1} + L_{2} + L_{3})$$

$$= (x - 1) \begin{vmatrix} 1 & 0 & -1 \\ 1 & x & 0 \\ 1 & -1 & x \end{vmatrix} \text{ (linéarité par rapport à la 1ère colonne)}$$

$$= (x - 1)(x^{2} + 1 + x) \text{ (règle de Sarrus)}$$

$$= x^{3} - 1$$

Le polynôme caractéristique étant scindé à racines simples, donc C_3 est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$. 1.2 Étude préliminaire sur les matrices C_n et D_n dans le cas général

- 1.2.1 $1, w, w^2, ..., w^{n-1}$ sont exactement les racines n-ème de l'unité, donc $w^{kn}=1$ pour tout $k \in [\![1,n-1]\!]$, donc $D^n_n=\operatorname{diag}\left(1^n,w^n,...,w^{n(n-1)}\right)=\operatorname{diag}(1,1,...,1)=I_n$.
- 1.2.2 Soit $(e_1, e_2, ..., e_n)$ la base canonique de \mathbb{C}^n , on confond matrice de $\mathcal{M}_n(\mathbb{C})$ et endomorphisme de \mathbb{C}^n canoniquement associé.

On a, pour tout $k \in [1, n-1]$, $D_n C_n(e_k) = D_n(e_{k+1}) = w^k e_{k+1}$ et $D_n C_n(e_n) = D_n(e_1) = e_1$. D'autre part, $C_n D_n(e_k) = C_n \left(w^{k-1} e_k \right) = w^{k-1} e_{k+1}$ et $C_n D_n(e_n) = C_n \left(w^{n-1} e_n \right) = w^{n-1} e_1$. Ainsi, $D_n C_n = w C_n D_n$.

1.2.3 Soit $\alpha_0, \alpha_2, ..., \alpha_{n-1}$ des scalaires tels que $\sum_{k=1}^n \alpha_k D_n^k = 0$. On obtient un système de n équations:

$$\forall l \in [0, n-1], \quad \sum_{k=0}^{n-1} \alpha_k w^{kl} = 0$$

C'est un système de Vandermonde, puisque la matrice associée s'écrit:

$$V(1, w, ..., w^{n-1}) = \begin{pmatrix} 1 & 1 & \dots & 1\\ 1 & w & \dots & w^{n-1}\\ \vdots & \vdots & \ddots & \vdots\\ 1 & w^{n-1} & \dots & w^{(n-1)^2} \end{pmatrix}$$

qui est inversible, donc nécessairement $\alpha_0=\alpha_1=\ldots=\alpha_{n-1}=0$ et par conséquent la famille $(I_n,D_n,...,D_n^{n-1})$ est libre. Si F_n désigne le sous-espace vectoriel de matrices diagonales, alors on sait que $F_n=\mathrm{Vect}(E_{11},E_{22},...,E_{nn})$ où $(E_{ij})_{1\leq i,j\leq n}$ désigne la base canonique $\mathscr{M}_n(\mathbb{C})$, donc dim $F_n=n$ et comme $\mathrm{Vect}(I_n,D_n,...,D_n^{n-1})\subset F_n$, alors il y a égalité:

$$F_n = \text{Vect}(I_n, D_n, ..., D_n^{n-1}).$$

1.2.4 Par définition

$$\chi_{C_n}(x) = \begin{vmatrix} x & 0 & 0 & \dots & 0 & -1 \\ -1 & x & 0 & \dots & 0 & 0 \\ 0 & -1 & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & x \end{vmatrix}$$

Ajoutons à la première ligne la combinaison linéaire $\sum_{k=1}^{n} x^{k-1} L_k$, où L_k représente la k-ème ligne.

On obtient alors

$$\chi_{C_n}(x) = \begin{vmatrix} 0 & 0 & 0 & \dots & 0 & x^n - 1 \\ -1 & x & 0 & \dots & 0 & 0 \\ 0 & -1 & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & x \end{vmatrix} = x^n - 1$$

en développant par rapport à la première ligne.

 χ_{C_n} étant scindé et à racines simples, on en déduit que C_n est diagonalisable dans $\mathscr{M}_n(\mathbb{C})$.

- 1.2.5 D'après le théorème de Cayley-Hamilton $\chi_{C_n}(C_n)=0$, c'est-à-dire $C_n^n=I_n$.
- 1.3 Une base de $\mathscr{M}_n(\mathbb{C})$ construite à partir des matrices C_n et n
 - 1.3.1 $u(e_k)$ est le k-ème vecteur colonne de la matrice C_n , donc $u(e_k) = e_{k+1}$ pour tout $k \in [1, n-1]$ et $u(e_n) = e_1$.
 - 1.3.2 On a $u(e_1) = e_2$. Supposons $u^k(e_1) = e_{k+1}$, donc $u^{k+1}(e_1) = u(e_{k+1}) = e_{k+2}$ et ceci pour $k+1 \in \{1,2,...,n-1\}$. En particulier, $u^{n-1}(e_1) = e_n$ et donc $u^n(e_1) = u(e_n) = e_1$.
 - 1.3.3 Si $k \in [2, n]$ on a $u^n(e_k) = u^n \left(u^{k-1}(e_1)\right) = u^{k-1} \left(u^n(e_1)\right) = u^{k-1}(e_1) = e_k$, de plus on a $u^n(e_1) = e_1$. D'où $u^n = id_E$ et donc $C_n^n = I_n$.

1.3.4 Soit
$$\alpha_0, \alpha_1, ..., \alpha_{n-1}$$
 des scalaires tels que $\sum_{k=0}^{n-1} \alpha_k u^k = 0$, en appliquant cette égalité à e_1 on

obtient
$$0 = \sum_{k=0}^{n-1} \alpha_k u^k(e_1) = \alpha_0 e_1 + \sum_{k=1}^{n-1} \alpha_k e_{k+1}$$
 et comme la famille $(e_1, e_2, ..., e_n)$ est libre alors

$$\alpha_0 = \alpha_1 = \dots = \alpha_{n-1} = 0$$
. Donc la famille $(id_E, u, \dots, u^{n-1})$ est libre.

Supposons que le polynôme minimal est de degré inférieur ou égal à n-1, alors il existe un n-1

polynôme
$$P = \sum_{k=0}^{n-1} a_k X^k \in \mathbb{C}_{n-1}[X]$$
 non nul tel que $P(u) = 0$, c'est-à-dire $\sum_{k=0}^{n-1} a_k u^k = 0$ avec

les a_k sont tous non nuls. Mais ceci est en contradiction avec le fait que la famille $(id_E, u, ..., u^{n-1})$ est libre, donc nécessairement $\deg P \geq n$. Comme le polynôme caractéristique est de degré n et annulateur, alors le polynôme minimal vaut $X^n - 1$.

- 1.3.5 D'après [1.2.2] on a vu = wuv. D'autre part, la k-ème colonne de D_n et proportionnelle à e_k , plus précisément, $v(e_k) = w^{k-1}e_k$ pour tout $k \in [1, n]$.
- 1.3.6 Il s'agit d'une famille de n^2 éléments de $\mathscr{M}_n(\mathbb{C})$, donc il suffit de montrer que la famille est libre puisque $\dim \mathscr{M}_n(\mathbb{C}) = n^2$. Soit donc $(\alpha_{kl})_{0 \leq k,l \leq n-1}$ des scalaires tels que $\sum_{0 \leq k,l \leq n-1} \alpha_{kl} C_n^k D_n^l = 0$

0 ce qui équivalent à:

$$\sum_{1 \le k, l \le n-1} \alpha_{kl} u^k v^l = 0. \tag{1}$$

Calculons d'abord u^k pour $k \in [0, n-1]$. Pour k=2, on obtient:

$$u^{2}(e_{1}) = u(e_{2}) = e_{3}$$

$$u^{2}(e_{2}) = u(e_{3}) = e_{4}$$

$$\vdots$$

$$u^{2}(e_{n-2}) = u(e_{n-1}) = e_{n}$$

$$u^{2}(e_{n-1}) = u(e_{n}) = e_{1}$$

$$u^{2}(e_{n}) = u(e_{1}) = e_{2}$$

Pour k = 3, on obtient:

$$u^{3}(e_{1}) = u(e_{3}) = e_{4}$$

$$u^{3}(e_{2}) = u(e_{4}) = e_{5}$$

$$\vdots$$

$$u^{3}(e_{n-3}) = u(e_{n-1}) = e_{n}$$

$$u^{3}(e_{n-2}) = u(e_{n}) = e_{1}$$

$$u^{3}(e_{n-1}) = u(e_{1}) = e_{2}$$

$$u^{3}(e_{n}) = u(e_{2}) = e_{3}$$

Montrons donc par récurrence que pour tout $k \in [\![1,n-1]\!]$, u^k est définie par:

$$\begin{cases} u^k(e_i) = e_{i+k} & \text{si } 1 \le i \le n-k \\ u^k(e_i) = e_{n-i-k} & \text{si } n-k+1 \le i \le n \end{cases}$$

On suppose la propriété vraie pour un certain $k \le n-2$, alors, en utilisant l'hypothèse de récurrence et en appliquant u, on a:

- si $1 \le i \le n k 1$, $u^{k+1}(e_i) = u(e_{i+k}) = e_{i+k+1}$
- $\operatorname{si} i = n k$, $u^{k+1}(e_n k) = u(e_n) = e_1$ $\operatorname{si} n k + 1 \le i \le n$, $u^{k+1}(e_i) = u(e_{n-i-k}) = e_{n-i-k+1}$

On remarque que le cas i=n-k peut être réintégré dans le premier cas, donc on a bien:

$$\begin{cases} u^{k+1}(e_i) = e_{i+k+1} & \text{si } 1 \le i \le n-k-1 \\ u^{k+1}(e_i) = e_{n-i-k-1} & \text{si } n-k \le i \le n \end{cases}.$$

La relation (1) entraı̂ne $\sum_{1 \le k,l \le n} \alpha_{kl} u^k v^l(e_i) = 0$ pour $1 \le i \le n$, donc $\sum_{1 \le k,l \le n} \alpha_{kl} u^k w^{l(i-1)} e_i = 0$. Or

$$\begin{split} \sum_{0 \leq k, l \leq n-1} \alpha_{kl} w^{l(i-1)} u^k(e_i) &= \sum_{k=0}^{n-i} \sum_{l=0}^{n-1} \alpha_{kl} w^{l(i-1)} u^k(e_i) + \sum_{k=n-i+1}^{n} \sum_{l=0}^{n-1} \alpha_{kl} w^{l(i-1)} u^k(e_i) \\ &= \sum_{k=0}^{n-i} \sum_{l=0}^{n-1} \alpha_{kl} w^{l(i-1)} e_{k+i} + \sum_{k=n-i+1}^{n} \sum_{l=0}^{n-1} \alpha_{kl} w^{l(i-1)} e_{n-k-i} \end{split}$$

Comme le e_i sont libre alors $\sum_{i=1}^{n-1} \alpha_{kl} w^{l(i-1)}$ pour tout $k \in [0, n-1]$. On obtient donc un système qui s'écrit:

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w & w^2 & \dots & w^{n-1} \\ 1 & w^2 & w^4 & \dots & w^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w^{n-1} & w^{2(n-1)} & \dots & w^{(n-1)^2} \end{pmatrix} \begin{pmatrix} \alpha_{k0} \\ \alpha_{k1} \\ \alpha_{k2} \\ \vdots \\ \alpha_{k(n-1)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Puisque les racines n-ème sont deux à deux distinctes, alors le determinant de Vandemonde est non nul et donc le système est inversible, par conséquent 0 est l'unique solution, donc nécessairement $\alpha_{kl}=0$ pour $l\in[1,n-1]$. Comme k est quelconque alors, on peut déduire les α_{kl} sont tous nuls et par conséquent la famille $(u^k v^k)_{0 \le k, l \le n-1}$ est libre, donc il est de même de la famille $(C_n^k D_n^k)_{0 \le k,l \le n-1}$.

Deuxième partie Une question de réduction

- 2.1 On a $f^n = f^{n-1}f = ff^{n-1} = Id_E$, donc f est inversible et $f^{-1} = f^{n-1}$. De même g est inversible et $g^{-1} = g^{n-1}$.
- 2.2 On remarque X^n-1 est un polynôme annulateur de f et g, donc comme on est dans \mathbb{C} , les endomorphismes f et q sont diagonalisables et ses valeurs propres sont des racines n-ème de l'unité.
- 2.3 Étude des valeurs propres et des sous-espaces propres de l'endomorphisme f
 - 2.3.1 On a $f(g(x_0)) = wg(f(x_0)) = wg(\lambda x_0) = w\lambda g(x_0)$. x_0 étant non nul et g inversible, donc $g(x_0) \neq 0$ et par conséquent on peut conclure que $w\lambda$ est une valeur propre de f.

- 2.3.2 On reprend le raisonnement précédent en remplaçant λ par $w\lambda$, on peut conclure que $w^2\lambda$ est une valeur propre de f. De proche en proche, on peut dire que les $w^k\lambda$, $k\in [\![1,n-1]\!]$, sont des valeurs propres de f.
- 2.3.3 Puisque λ est une racine n-ème de l'unité, alors $\lambda \neq 0$ et on peut conclure que les valeurs propres $\lambda, w\lambda, ..., w^{n-1}\lambda$ sont des deux distinctes, donc les valeurs propres de f sont exactement les racines n-ème de l'unité.
- 2.3.4 Dans ces conditions $\chi_f = X^n 1$, donc les valeurs propres sont simples et par conséquent les sous-espaces propres sont des droites vectoriels.
- 2.4 Une base de E, convenable pour les endomorphismes f et g
 - 2.4.1 Soit $k \in [1, n-1]$, on a:

$$\begin{array}{lcl} f(g^k(e)) & = & wgf(g^{k-1}(e)) \\ & = & w^2g^2f(g^{k-2}(e)) = \ldots = w^{k-1}g^{k-1}f(g(e)) \\ & = & w^{k-1}g^{k-1}(gf(e))w^{k-1}g^{k-1}(g(e)) \\ & = & w^kg^k(e). \end{array}$$

- 2.4.2 D'après la question précédente, les vecteurs $e,g(e),...,g^{n-1}(e)$ sont bien des vecteurs propres (non nuls) de f. De plus le sous-espace propre associé à la valeur propre w^k est engendré par $g^k(e), k \in [\![0,n-1]\!]$. Comme f est diagonalisable ces vecteurs engendrent E, donc ils forment une base de E.
- 2.4.3 Puisque $f(g^k(e)) = w^k g^k(e)$, $k \in [0, n-1]$, alors $\mathrm{Mat}(f, \mathscr{B}) = D_n$. D'autre part, $g(g^k(e)) = g^{k+1}(e)$, donc $\mathrm{Mat}(g, \mathscr{B}) = C_n$.

Troisième partie

Application à la détermination des endomorphismes de l'algèbre $\mathcal{M}_n(\mathbb{C})$

3.1 La propriété est vraie pour p=0. Supposons qu'elle vraie à l'ordre p. Donc:

$$\Phi(M^{p+1}) = \Phi(M^{p}M) = \Phi(M^{p})\Phi(M) = \Phi(M)^{p}\Phi(M) = \Phi(M)^{p},$$

et on conclut par le principe de récurrence.

3.2 Puisque $D_n^n = C_n^n = I_n$, alors $\Phi(D_n)^n = \Phi(D_n^n) = \Phi(I_n) = I_n$ et $\Phi(C_n)^n = \Phi(C_n^n) = \Phi(I_n) = I_n$. De même, $\Phi(D_n)\Phi(C_n) = \Phi(D_nC_n) = \Phi(wD_nC_n) = w\Phi(D_nC_n) = w\Phi(D_n)\Phi(C_n)$. 3.3

3.3.1 Les égalités matricielles de la question [3.2] se traduisent par les relations vectoriels:

$$f_1^n = g_1^n = id_{\mathcal{M}_{n,1}(\mathbb{C})}$$
 et $f_1g_1 = wg_1f_1$.

- 3.3.2 Ceci découle des résultats de la deuxième partie.
- 3.3.3 Soit P la matrice de passage de la base canonique de E à la base de vecteurs propres \mathscr{B} . D'après les formules de changement de bases, on a $\Phi(D_n)=PD_nP^{-1}$ et $\Phi(C_n)=PC_nP^{-1}$.
- 3.4 Soit $M=\sum_{0\leq k,l\leq n-1} \alpha_{kl}C_n^kD_n^l$ une matrice de $\mathscr{M}_n(\mathbb{C})$ décomposée dans la base $(C_n^kD_n^k)_{0\leq k,l\leq n-1}$

(d'après la partie préliminaire), alors on a:

$$\begin{split} \Phi(M) &= \Phi\left(\sum_{1 \leq k, l \leq n} \alpha_{kl} C_n^k D_n^l\right) \\ &= \sum_{0 \leq k, l \leq n-1} \alpha_{kl} \Phi\left(C_n^k D_n^l\right) \ (\Phi \text{ lin\'eaire}) \\ &= \sum_{0 \leq k, l \leq n-1} \alpha_{kl} \Phi(C_n)^k \Phi(D_n)^l \ (\Phi \text{ morphisme d'alg\'ebre}) \\ &= \sum_{0 \leq k, l \leq n-1} \alpha_{kl} P C_n^k P^{-1} P D_n^l P^{-1} \ \text{d'apr\`es la question [3.3.3]} \\ &= P\left(\sum_{0 \leq k, l \leq n-1} \alpha_{kl} C_n^k D_n^l\right) P^{-1} \\ &= P M P^{-1} \end{split}$$

3.5 Il est clair que les applications $\Psi: M \mapsto PMP^{-1}$ de $\mathscr{M}_n(\mathbb{C})$ dans $\mathscr{M}_n(\mathbb{C})$ où P est inversible sont des applications linéaires, de plus $\Psi(I_n) = PI_nP^{-1} = I_n$ et $\forall A, B \in \mathscr{M}_n(\mathbb{C})$,

$$\Psi(AB) = PABP^{-1} = (PAP^{-1})(PBP^{-1}) = \Psi(A)\Psi(B).$$

Donc les applications précédentes sont bien des morphismes de la \mathbb{C} -algèbre $\mathscr{M}_n(\mathbb{C})$.

• • • • • • • • •