Devoir libre n°11 Correction

Partie I: Méthode utilisant un produit scalaire

Notons que $\triangle = \inf_{(x,y) \in \mathbb{R}^2} \int_0^{+\infty} (t^3 - xt - y)^2 e^{-t} dt$ existe car l'ensemble $\left\{ \int_0^{+\infty} (t^3 - xt - y)^2 e^{-t} dt / (x,y) \in \mathbb{R}^2 \right\}$ est une partie non vide et minorée (par zéro!) de \mathbb{R} .

1. (a) On sait que la fonctions $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ a pour domaine de définition $]0, +\infty[$, et qu'elle vérifie :

$$\forall x \in]0, +\infty[, \Gamma(x+1) = x\Gamma(x)]$$

et

$$\forall n \in \mathbb{N}^*, \Gamma(n) = (n-1)!.$$

Donc $\forall k \in \mathbb{N}$, l'intégrale $\int_0^{+\infty} t^k e^{-t} \mathrm{d}t$ converge et vaut k!.

On pose
$$I_k = \int_0^{+\infty} t^k e^{-t} dt = k!$$
.

- (b) Montrons que (.|.) est un produit scalaire sur E.
 - Soit A un élément de $\mathbb{R}[X]$. Il existe un élément d de \mathbb{N} et un élément $(a_0, a_1, ..., a_d)$ de \mathbb{R}^{d+1} tels que :

$$\forall x \in \mathbb{R}, \ A(x) = \sum_{k=0}^{d} a_k x^k.$$

Pour tout élément k de \mathbb{N} , $\int_0^{+\infty} x^k e^{-x} \mathrm{d}x$ converge donc $\int_0^{+\infty} \left(\sum_{k=0}^d a_k x^k e^{-x}\right) \mathrm{d}x = \sum_{k=0}^d a_k \int_0^{+\infty} x^k e^{-x} \mathrm{d}x$ converge comme combinaison linéaire de d+1 intégrales convergentes. Ainsi l'intégrale $\int_0^{+\infty} A(x) e^{-x} \mathrm{d}x$ est convergente. Soit (P,Q) un couple d'éléments de E. Comme PQ appartient à $\mathbb{R}[X]$ donc $\int_0^{+\infty} P(x)Q(x)e^{-x} \mathrm{d}x$ converge. Ainsi

(P|Q) existe et est réel. Donc (.|.) est bien une application de $E \times E$ dans \mathbb{R} .

• Soit λ un réel et soient P, Q, R trois éléments de E.

$$(\lambda P + Q|R) = \int_0^{+\infty} (\lambda P + Q)(x)R(x)e^{-x}dx$$

$$= \int_0^{+\infty} (\lambda P(x)R(x) + Q(x)R(x))e^{-x}dx$$

$$= \int_0^{+\infty} (\lambda P(x)R(x)e^{-x} + Q(x)R(x)e^{-x})dx$$

$$= \lambda \int_0^{+\infty} P(x)R(x)e^{-x}dx + \int_0^{+\infty} Q(x)R(x)e^{-x}dx$$

car toutes les intégrales convergent. Alors

$$(\lambda P + Q|R) = \lambda(P|R) + (Q|R).$$

Donc (.|.) est linéaire à gauche.

• Soit (P,Q) un couple d'éléments de E. On a :

$$(P|Q) = \int_0^{+\infty} P(x)Q(x)e^{-x}dx = \int_0^{+\infty} Q(x)P(x)e^{-x}dx = (Q|P).$$

Ainsi (.|.) est symétrique.

• Soit P un élément de E. $\forall x \in \mathbb{R}, (P(x))^2 e^{-x} \ge 0$ donc $(P|P) = \int_0^{+\infty} (P(x)) 2e^{-x} \mathrm{d}x \ge 0$. Donc (.|.) est positive.

• Soit P un élément de E tel que (P|P) = 0.

On a donc $\int_0^{+\infty} (P(x)) 2e^{-x} dx = 0$ et l'application $x \mapsto (P(x)) 2e^{-x}$ est continue et positive sur $[0, +\infty[$. Alors $x\mapsto (P(x))^2e^{-x}$ est nulle sur $[0,+\infty[$. Comme $x\mapsto e^{-x}$ ne s'annule pas sur $[0,+\infty[$:

$$\forall x \in [0, +\infty[, (P(x))^2 = 0.$$

Ainsi $\forall x \in [0, +\infty[$, P(x) = 0. Le polynôme P admet alors une infinité de zéros c'est donc le polynôme nul. Donc (.|.) est définie.

Les cinq points précédents permettent de dire que (.|.) est un produit scalaire sur E.

2. Pour tout $P \in E$, $||P||^2 = (P|P) = \int_{1}^{+\infty} (P(t))^2 e^{-t} dt$. Alors si Q est un polynôme de F défini par Q = xX + y, où xet y sont deux réels :

$$||X^3 - Q||^2 = ||X^3 - xX - y||^2 = \int_0^{+\infty} (t^3 - xt - y)^2 e^{-t} dt.$$

- (a) (E,(.|.)) est un espace vectoriel euclidien, F est un sous espace vectoriel de E et X^3 est un élément de E. Le théorème de meilleur approximation indique que :
 - $\textbf{1.}\left\{\|X^3-Q\|,Q\in F\right\} \text{ possède un minimum donc } \left\{\|X^3-Q\|^2,Q\in F\right\} \text{ possède également un minimum.}$
 - **2.** Îl existe un élément Q_0 de F et un seul qui réalise ces deux minimums.

 - **3.** Q_0 est la projection orthogonale de X^3 sur F. **4.** $[d(X^3, F)]^2 = \min_{Q \in F} ||X^3 Q||^2 = ||X^3 Q_0||^2$.
 - (b) Q_0 est la projection orthogonale de X^3 sur F et F = Vect(1, X). Ainsi $X^3 Q_0$ appartient à l'orthogonal de F. Alors $X^3 - Q_0$ est orthogonal à 1 et à X. D'où :

$$(X^3 - Q_0|1) = 0$$

et

$$(X^3 - Q_0 | X) = 0.$$

(c) Q_0 appartient à F donc il existe deux réels x_0 et y_0 tels que $Q_0=x_0X+y_0$. De plus $(X^3-Q_0|1)=(X^3-Q_0|X)=0$. Alors $0 = (X^3 - Q_0|1) = (X^3 - x_0X - y_0|1) = \int_0^{+\infty} (t^3 - x_0t - y_0)e^{-t}dt$. Donc

$$0 = I_3 - x_0 I_1 - y_0 I_0 = 3! - 1!x_0 - 0!y_0 = 6 - x_0 - y_0.$$

Ainsi:

$$x_0 + y_0 = 6$$
 (1)

On a aussi

$$0 = (X^3 - Q_0|X) = (X^3 - x_0X - y_0|X) = I_4 - x_0I_2 - y_0I_1 = 24 - 2x_0 - y_0.$$

Alors

$$2x_0 + y_0 = 24$$
 (2)

Donc $Q_0 = x_0 X + y_0$, le polynôme qui réalise le minimum de $\{||X^3 - Q||^2/Q \in F\}$, est défini par le système :

$$\begin{cases} x_0 + y_0 = 6 \\ 2x_0 + y_0 = 24 \end{cases}$$

(d) On trouve d'abord $(x_0, y_0) = (18, -12)$. On a alors

$$\Delta = \int_0^{+\infty} (t3 - 18t + 12)^2 e^{-t} dt.$$

En développant, on trouve :

$$\Delta = \int_0^{+\infty} (t^6 - 36t^4 + 24t^3 + 324t^2 - 432t + 144)e^{-t}dt = I_6 - 36I_4 + 24I_3 + 324I_2 - 432I_1 + 144I_0 = 360.$$

Partie II :méthode utilisant une fonction de deux variables

4. Soit
$$(x, y)$$
 un élément de \mathbb{R}^2 . $f(x, y) = \int_0^{+\infty} (t^3 - xt - y)^2 e^{-t} dt = \int_0^{+\infty} (t^6 + x^2t^2 + y^2 - 2xt^4 - 2yt^3 + 2xyt)e^{-t} dt$.

$$f(x,y) = I_6 + x^2 I_2 + y^2 I_0 - 2xI_4 - 2yI_3 + 2xyI_1$$

$$f(x,y) = 2x^2 + y^2 + 2xy - 48x - 12y + 720.$$

$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) = 2x^2 + y^2 + 2xy - 48x - 12y + 720.$$

5. Notons que f est une fonction polynôme sur \mathbb{R}^2 , donc f est de classe \mathscr{C}^1 sur \mathbb{R}^2 , et on a :

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 4x + 2y - 48\\ \frac{\partial f}{\partial y}(x,y) = 2x + 2y - 12 \end{cases}$$

Donc f admet un point critique et un seul (x_0, y_0) sur \mathbb{R}^2 : $(x_0, y_0) = (18, -12)$.

6. f est de classe \mathscr{C}^1 sur l'ouvert \mathbb{R}^2 , donc si f possède un extremum local en un point de \mathbb{R}^2 , ce point est un point critique de f. Ainsi (x_0, y_0) est le seul point de \mathbb{R}^2 où f peut admettre un extremum local. Étudions alors si f admet un extremum local en (x_0, y_0) en utilisant le théorème de cours. f est de classe \mathscr{C}^2 sur \mathbb{R}^2 comme fonction polynôme. On a, avec les notations de Monge :

$$r = \frac{\partial^2 f}{\partial x^2}(18, -12) = 4, \, s = \frac{\partial^2 f}{\partial u \partial x}(18, -12) = 2 \text{ et } t = \frac{\partial^2 f}{\partial u^2}(18, -12) = 2.$$

Donc r = 4 > 0 et $rt - s^2 = 4 > 0$. Ceci prouve que la fonction f a un minimum local au point (18, -12) et qui vaut m = f(18, -12) = 360.

7. Montrons que ce minimum est global. Pour cela établissons que :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) \ge 360.$$

Pour tout couple (x, y) de \mathbb{R}^2 , on a :

$$f(x,y) - 360 = 2x^2 + y^2 + 2xy - 48x - 12y + 360$$

On peut écrire successivement :

$$f(x,y) - 360 = 2(x^2 + xy - 24x) + y^2 - 12y + 360$$

$$= 2\left(\left(x + \frac{y}{2} - 12\right)^2 - \frac{y^2}{4} + 12y + 72\right) + y^2 - 12y + 360$$

$$= 2\left(x + \frac{y}{2} - 12\right)^2 + \frac{1}{2}(y^2 + 24y + 144)$$

$$= 2\left(x + \frac{y}{2} - 12\right)^2 + \frac{1}{2}(y + 12)^2$$

On constate que $f(x,y) - 360 \ge 0$ en tant que somme de deux carrés de réels, ce qui prouve que f admet un minimum global en (x_0, y_0) .

Remarquons que l'inégalité précédente est une égalité si, et seulement si, $(x, y) = (18, -12) = (x_0, y_0)$, donc il s'agit d'un minimum global strict.

• • • • • • • •