Devoir libre $n^{\circ}6$ Correction

N'hésitez pas de me signaler les erreurs rencontrées ¹.

• • • • • • • • •

Partie I- Cas d'une série à termes positifs

1. (a) i. Pour tout $n \in \mathbb{N}$ et pour tout $i \in [0, n]$, $0 \le \sigma(i) \le M(n)$, par définition de M(n). Ainsi, $\sigma([0, n]) \subset [0, M(n)]$. Comme tous les termes u_i sont positifs, on en déduit que :

$$\sum_{j \in \sigma(\llbracket 0, n \rrbracket)} u_j \le \sum_{j \in \llbracket 0, n \rrbracket} u_j.$$

c'est-à-dire $S_n(\sigma) \leq S_{M(n)}$.

Or $\sum_{n\in\mathbb{N}}u_n$ étant convergente et à termes positifs, sa somme partielle est bornée, donc $(S_{M(n)})_{n\in\mathbb{N}}$ est bornée, donc $(S_n(\sigma))_{n\in\mathbb{N}}$ aussi.

- ii. La suite de sommes partielles $(S_n(\sigma))_{n\in\mathbb{N}}$ associée à la série $\sum_{n\in\mathbb{N}}u_{\sigma(n)}$ qui est de termes positifs est majorée, donc la série $\sum_{n\in\mathbb{N}}u_{\sigma(n)}$ converge.
- (b) Pour tout $n \in \mathbb{N}$, on a $S_n(\sigma) \leq S_{M(n)} \leq \sum_{n=0}^{\infty} u_n$, on obtient donc par passage à la limite : $\sum_{n=0}^{\infty} u_{\sigma(n)} \leq \sum_{n=0}^{\infty} u_n.$
- (c) Soit pour tout $n \in \mathbb{N}$, $v_n = u_{\sigma(n)}$. D'après la question 1.(a), $\sum_{n \in \mathbb{N}} v_n$ converge. De plus pour tout $n \in \mathbb{N}$, $u_n = v_{\sigma^{-1}(n)}$, et σ^{-1} et est une bijection de \mathbb{N} . On peut donc appliquer la question 1.(b) avec $(v_n)_{n \in \mathbb{N}}$ et σ^{-1} :

$$\sum_{n=0}^{\infty} v_{\sigma^{-1}(n)} \le \sum_{n=0}^{\infty} v_n.$$

c'est-à-dire

$$\sum_{n=0}^{\infty} u_n \le \sum_{n=0}^{\infty} u_{\sigma(n)}.$$

Finalement, la question 1.(b) donnant l'inégalité dans l'autre sens, on a l'égalité.

2. On applique la question 1.(a) à la série $\sum_{n\in\mathbb{N}}v_n$ (où $v_n=u_{\sigma^{-1}(n)}$) et à la bijection σ^{-1} . Soit $n\in\mathbb{N}$. Notons $M'(n)=\sup(\sigma^{-1}(0),...,\sigma^{-1}(n))$. Alors,

$$\sum_{i=1}^{M'(n)} v_i \ge \sum_{i=1}^n v_{\sigma^{-1}(i)},$$

1. Source: site de Alain TROESCH

c'est-à-dire

$$\sum_{i=1}^{M'(n)} u_{\sigma(i)} \ge \sum_{i=1}^{n} u_{i}.$$

ou encore $S_{M'(n)}(\sigma) \geq S_n$. Comme $\sum_{n \in \mathbb{N}} u_n$ diverge, et est à termes positifs, $(S_n)_{n \in \mathbb{N}}$ n'est pas majorée, donc $(S_{M'(n)}(\sigma))_{n \in \mathbb{N}}$, puis $(S_n(\sigma))_{n \in \mathbb{N}}$ non plus. Ainsi, $\sum_{n \in \mathbb{N}} u_{\sigma(n)}$ diverge.

3. Théorème : Soit un une série à termes positifs, et σ une bijection de $\mathbb N$. Alors $\sum_{n\in\mathbb N}u_n$ et $\sum_{n\in\mathbb N}u_{\sigma(n)}$ sont de même nature, et si elles convergent, elles ont même somme.

Partie II- Cas d'une série absolument convergente

- 1. Soit pour tout $n \in \mathbb{N}$, $v_n = |u_n|$. Alors pour tout $n \in \mathbb{N}$, $v_n \ge 0$ et $v_{\sigma(n)} = |u_{\sigma(n)}|$. De plus, $\sum_{n \in \mathbb{N}} v_n$ converge, car $\sum_{n \in \mathbb{N}} u_n$ converge absolument. En appliquant la partie I à la suite $(v_n)_{n \in \mathbb{N}}$, la série $\sum_{n \in \mathbb{N}} v_{\sigma(n)}$ converge absolument.
- **2.** Soit $n \in \mathbb{N}$, et $I = [0, M(n)] \setminus \sigma([0, n])$. Alors

$$\begin{vmatrix} \sum_{i=1}^{M(n)} u_i - \sum_{i=1}^{n} u_{\sigma(i)} \\ = \left| \sum_{i \in [\![0, M(n)]\!]} u_i - \sum_{i \in \sigma([\![0, n]\!])} u_i \right| \\ = \left| \sum_{i \in I} u_i \right| \\ \le \sum_{i \in I} |u_i| = \sum_{i \in [\![0, M(n)]\!]} |u_i| - \sum_{i \in \sigma([\![0, n]\!])} |u_i| \\ \le \sum_{i=1}^{M(n)} |u_i| - \sum_{i=1}^{n} |u_{\sigma(i)}| \end{aligned}$$

3. On fait tendre n vers $+\infty$ dans l'inégalité précédente. Le terme de droite tend vers 0 d'après le théorème de partie I, par conséquent $\left(\sum_{i=1}^{M(n)}u_i-\sum_{i=1}^nu_{\sigma(i)}\right)_{n\in\mathbb{N}}$ tend vers 0, et comme $\sum_{n\in\mathbb{N}}u_n$ converge et que $(M(n))_{n\in\mathbb{N}}$ tend $+\infty$, cela implique que $\sum_{n\in\mathbb{N}}u_n$ converge également et que

$$\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{\infty} u_{\sigma(n)}.$$

Partie III- Contre-exemple dans le cas d'une série semi-convergente

^{2.} Soit $n \in \mathbb{N}$. σ étant bijective, on a card $(\sigma[0,n]) = \operatorname{card}([0,n])$, donc $\sigma([0,n]) \notin [0,n-1]$. Or, $\sigma([0,n]) \subset [0,M(n)]$. Ainsi, M(n) > n-1, donc cette inégalité étant dans \mathbb{N} , $M(n) \ge n$. Par conséquent, $(M(n))_{n \in \mathbb{N}}$ tend vers $+\infty$ lorsque n tend vers $+\infty$.

- 1. La série harmonique $\sum_{n \in \mathbb{N}} \frac{1}{n}$ diverge (Riemann avec $\alpha = 1$), donc on n'a pas de convergence absolue. Mais, la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n}$ est une série convergente d'après le critère spécial des séries alternées.
- **2.** Pour tout $n \in \mathbb{N}^*$, $v_n = u_{2n} + u_{2n+1} = \frac{1}{2n} \frac{1}{2n+1} = \frac{1}{2n(2n+1)} \ge 0$. Donc, par comparaison, la série $\sum_{n \in \mathbb{N}^*} v_n \text{ converge et } \sum_{n=1}^{\infty} v_n \ge 0.$
- **3.** Soit $S_n = \sum_{k=2}^n u_k$ et $T_n = \sum_{k=1}^n v_k = \sum_{k=2}^{2n+1} u_k = S_{2n+1}$. Ainsi, $(T_n)_{n \in \mathbb{N}^*}$ est une suite extraite de $(S_n)_{n \in \mathbb{N} \setminus \{0,1\}}$. Comme ces deux suites sont convergentes, alors on obtient par passage à la limite :

$$\sum_{n=1}^{\infty} v_n = \sum_{n=2}^{\infty} u_n.$$

4. On construit une application τ de $\mathbb{N}\setminus\{0,1\}$ dans $\mathbb{N}\setminus\{0,1\}$:

$$\forall n \in \mathbb{N} \backslash \{0,1\}, \quad \tau(n) = \left\{ \begin{array}{ll} \frac{3n}{2} - 1 & \text{si } n \equiv 0 \quad [4], \\ \frac{3n}{2} - 1 & \text{si } n \equiv 2 \quad [4], \\ \frac{3}{4}(n+1) & \text{si } n \equiv -1 \quad [4], \\ \frac{3}{4}(n-1) + 1 & \text{si } n \equiv 1 \quad [4]. \end{array} \right.$$

L'application τ vérifie $\tau \circ \sigma = \sigma \circ \tau = id$. Cela montre que σ est une bijection.

5. Pour tout $n \in \mathbb{N}^*$,

$$w_n = u_{\sigma(3n-1)} + u_{\sigma(3n)} + u_{\sigma(3n+1)}$$

$$= u_{2n} + u_{4n-1} + u_{4n+1}$$

$$= \frac{1}{2n} - \frac{1}{4n-1} - \frac{1}{4n+1}$$

$$= \frac{-1}{2n(4n-1)(4n+1)} < 0$$

Ainsi, $\sum_{n\in\mathbb{N}^*}w_n$ est une série à terme de signe constant, et $w_n\simeq\frac{-1}{32n^2}$. Comme les séries sont de signe constant, $\sum_{n\in\mathbb{N}^*}w_n$ converge d'après le théorème de comparaison.

De plus, tous les termes w_n sont strictement négatifs, il en est donc de même de la somme $\sum_{n=1}^{\infty} w_n$.

6. Soit pour tout $n \in \mathbb{N} \setminus \{0,1\}$, $S_n(\sigma) = \sum_{k=2}^n u_{\sigma(k)}$. Alors $\sum_{k=1}^n w_k = S_{3n+1}(\sigma)$. Ainsi, $(S_{3n+1}(\sigma))_{n \in \mathbb{N}^*}$ converge et sa limite vaut $\sum_{k=1}^\infty w_k$.

Or, pour tout $n \ge 1$, $S_{3n}(\sigma) = S_{3n+1}(\sigma) + \frac{1}{4n+1}$. Comme $\frac{1}{4n+1}$ tend vers 0, $(S_{3n}(\sigma))_{n \in \mathbb{N}}$ admet une limite, égale à celle de $(S_{3n+1}(\sigma))_{n \in \mathbb{N}}$. Par un raisonnement similaire c'est également la limite de

 $(S_{3n+2}(\sigma))_{n\in\mathbb{N}}$. Ainsi, $(S_n(\sigma))_{n\in\mathbb{N}}$ admet une limite, égale à cette valeur commune 3 :

$$\sum_{n=1}^{\infty} w_n = \sum_{n=2}^{\infty} u_{\sigma(n)}.$$

7. On obtenu l'inégalité $\sum_{n=2}^\infty u_{\sigma(n)} < 0 \le \sum_{n=2}^\infty u_n$. Conclusion : En changeant l'ordre des termes, on a obtenu une série convergente, mais dont la valeur de la somme est différente de la valeur de la somme initiale.

4 / 4 Prof: Mohamed TARQI Classe: MP1

^{3. .} Exercice : Montrer que si les suites extraites $(u_{3n})_{n\in\mathbb{N}}$, $(u_{3n+1})_{n\in\mathbb{N}}$ et $(u_{3n+2})_{n\in\mathbb{N}}$ convergent vers la même limite, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.