Devoir libre $n^{\circ}07$

Correction

N'hésitez pas de me signaler les erreurs rencontrées.

• • • • • • • • •

PRÉLIMINAIRES

1. Si la suite $(a_n)_{n\in\mathbb{N}}$ est à variations bornés alors la série $\sum_{n_i n \mathbb{N}} b_n$ est absolument convergente, donc convergente, or

 $\sum_{k=1}^n b_k = \sum_{k=1}^n (a_{k-1} - a_k) = a_0 - a_n \text{ donc la suite } (a_n)_{n \in \mathbb{N}} \text{ est convergente.}$

2. On a $d_n = b_n - b_{n+1}$, donc pour tout $N \in \mathbb{N}$, on a :

$$\sum_{n=1}^{N} n d_n = \sum_{n=1}^{N} n(b_n - b_{n+1})$$

$$= \sum_{n=1}^{N} n b_n - \sum_{n=2}^{N+1} (n-1) b_n$$

$$= \sum_{n=1}^{N} b_n + \sum_{n=1}^{N} (n-1) b_n - \sum_{n=1}^{N} (n-1) b_n - N b_{N+1}$$

$$= \sum_{n=1}^{N} b_n - N b_{N+1}.$$

PARTIE I

- 1. On a, pour tout entier $n \in \mathbb{N}$, $d_n = b_n b_{n+1}$ ce qui montre que la suite $(a_n)_{n \in \mathbb{N}}$ est convexe si et seulement si la suite $(b_n)_{n \in \mathbb{N}}$ est décroissante.
- **2.** Par convexité de la fonction *f* , on a :

$$f(n) = f\left(\frac{n+1}{2} + \frac{n-1}{2}\right) \le \frac{1}{2}f(n+1) + \frac{1}{2}f(n-1).$$

D'où $f(n+1) + f(n-1) - 2f(n) \ge 0$ ce qui montre que la suite de terme général $a_n = f(n)$ est convexe.

3. On a donc (b_n) et $(-b_n)_{n\in\mathbb{N}}$ croissantes donc (b_n) est une suite constante, ainsi, pour tout $n\in\mathbb{N}$, on a $a_{n-1}-an=b_0$, d'où on en déduit, par une récurrence immédiate, que

$$\forall n \in \mathbb{N}, \ a_n = a_0 - nb_0.$$

La réciproque est immédiate. Ainsi les suites convexes et d'opposé convexe sont les suites arithmétiques.

- **4.** La fonction $f: x \mapsto x^{\alpha}$ est convexe si $\alpha \geq 1$ (sa dérivée seconde est positive) et strictement concave si $0 < \alpha < 1$. Donc la suite $(n^{\alpha})_{n \in \mathbb{N}}$ est convexe si et seulement si $\alpha \geq 1$.
- **5.** (a) Avec une calculatrice, pour n = 9, on trouve :

$$\begin{array}{c|ccccc}
n & 8 & 9 & 10 \\
\hline
a_n & 22 & 27 & 31 \\
\end{array}$$

Donc $d_9 = -1 < 0$ et par conséquent la suite $(a_n)_{n \in \mathbb{N}}$ n'est pas convexe.

(b) On a

$$(n+1)^{\alpha} - 1 < E[(n+1)\alpha]$$
$$(n-1)^{\alpha} - 1 < E[(n-1)\alpha]$$
$$-2n\alpha < -2E(n^{\alpha})$$

d'où, en additionnant ces inégalités, on trouve

$$d_n \ge (n+1)^{\alpha} + (n-1)\alpha - 2n - 2.$$

Soit $f: x \mapsto (x+1)^{\alpha} + (x-1)\alpha - 2x - 2$, alors $f(1) = 2^{\alpha} - 4 \ge 0$ (car $\alpha \ge 2$) puis $f': x \mapsto \alpha[(x+1)^{\alpha-1} + (x-1)^{\alpha-1}1 - 2x^{\alpha-1}]$ est à valeurs positives car $g: x \mapsto x^{\alpha-1}$ est convexe. Donc f est croissante et, de la propriété $f(1) \ge 0$, on tire que f(n) est positif pour $n \ge 1$. Ainsi, pour $\alpha \ge 2$, la suite $E(n^{\alpha})$ est convexe.

PARTIE II

- **1.** La suite $(b_n)_{n\in\mathbb{N}}$ décroît et, puisque pour tout $n\in\mathbb{N}$, $-A\leq a_n\leq A$, on a : $b_n=a_{n-1}-a_n\geq -2A$. Toute suite décroissante et minorée converge dans \mathbb{R} , donc $(b_n)_{n\in\mathbb{N}}$ converge.
 - Supposons $\lim_{n\to\infty}b_n\neq 0$, alors $(a_n)_{n\in\mathbb{N}}$ ne serait pas bornée, en effet, en supposant par exemple $b=\lim_{n\to\infty}b_n>0$, il existe un entier n_0 tel que, pour tout $n\geq n_0$, on a $b_n\geq \frac{b}{2}>0$, d'où par une récurrence immédiate, $\forall n\geq n_0$, $a_n\leq a_{n_0}-\frac{n-n_0}{2}b$, ce qui montre que $\lim_{n\to\infty}a_n=-\infty$: contradiction. En conclusion $\lim_{n\to\infty}b_n=0$, en particulier $b_n\geq 0$ puisqu'elle décroissante.
- 2. Puisque $b_n \ge 0$ pour tout $n \in \mathbb{N}$, la suite $(a_n)_{n \in \mathbb{N}}$ est décroissante, puisqu'elle est minorée, elle est donc convergente.
- 3. On écrit $a_p a_n = \sum_{k=p+1}^n b_k$ et comme $(b_n)_{n \in \mathbb{N}}$ est décroissante, alors $b_k \leq b_n$ pour tout $k_i n \llbracket p+1, n \rrbracket$, donc $a_p a_n \geq b_n$

$$\sum_{k=p+1}^n b_n = (n-p)b_n \ge n_s 2b_n$$
 (car $-p \ge -rac{n}{2}$) donc

$$0 \le nb_n \le 2(a_p - an).$$

En particulier, pour tout $n \in \mathbb{N}$, on a

$$0 \le 2nb_{2n} \le 2(a_n - a_{2n})$$
 et $0 \le (2n+1)b_{2n+1} \le 2(a_n - a_{2n+1})$

et ce deuxième membre tend vers 0 quand n tend vers l'infini. On a donc montré $\lim_{n\to\infty} nb_n=0$. L'inégalité $\forall n\in\mathbb{N}$, $0\leq nb_{n+1}\leq (n+1)b_{n+1}$ suffit alors pour conclure que $\lim_{n\to\infty} nb_{n+1}=0$.

4. D'après la question 2. de la partie préliminaires, on a :

$$\sum_{n=1}^{N} n d_n = \sum_{n=1}^{N} b_n - N b_{N+1}.$$

Puisque la suite $(a_n)_{n\in\mathbb{N}}$ converge, la série $\sum b_n$ converge, et comme $\lim_{N\to\infty} Nb_{N+1}=0$, la série $\sum nd_n$ converge puis, par passage à la limite, on obtient la relation

$$\sum_{n=1}^{\infty} n d_n = \sum_{n=1}^{\infty} b_n.$$

PARTIE III

1. On rappelle l'égalité suivante, qu'on peut utiliser sans démonstration :

$$\sum_{n=1}^{N} \sum_{p=1}^{n} a_{n,p} = \sum_{p=1}^{N} \sum_{n=p}^{N} a_{n,p}.$$

En utilisant l'inégalité de l'indication et l'inégalité triangulaire, et on fait la somme sur n, on obtient

$$\begin{split} \sum_{n=1}^{N} |b_{n}| & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{n=1}^{N} \sum_{p=1}^{n-1} \frac{p}{N} |b_{p} - b_{p+1}| + \sum_{n=1}^{N} \sum_{p=n}^{N-1} \frac{N-p}{N} |b_{p} - b_{p+1}| \\ & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{n=1}^{N} \sum_{p=0}^{n-1} \frac{p}{N} |b_{p} - b_{p+1}| + \sum_{n=1}^{N} \sum_{p=n}^{N} \frac{N-p}{N} |b_{p} - b_{p+1}| \\ & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{n=1}^{N} \sum_{p=1}^{n} \frac{p-1}{N} |b_{p-1} - b_{p}| + \sum_{n=1}^{N} \sum_{p=n}^{N} \frac{N-p}{N} |b_{p} - b_{p+1}| \\ & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{p=1}^{N} \sum_{n=p}^{N} \frac{p-1}{N} |b_{p-1} - b_{p}| + \sum_{p=1}^{N} \sum_{n=1}^{p} \frac{N-p}{N} |b_{p} - b_{p+1}| \\ & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{p=1}^{N} (N-p+1) \frac{p-1}{N} |b_{p-1} - b_{p}| + \sum_{p=1}^{N} \frac{p}{N} \frac{N-p}{N} |b_{p} - b_{p+1}| \\ & \leq \left| \sum_{n=1}^{N} b_{n} \right| + \sum_{p=1}^{N-1} (N-p) \frac{p}{N} |b_{p} - b_{p+1}| + \sum_{p=1}^{N-1} p \frac{N-p}{N} |b_{p} - b_{p+1}| \\ & \leq \sum_{n=1}^{N} b_{n} + \sum_{p=1}^{N-1} \frac{1}{N} |b_{p} - b_{p+1}| (p(N-p) + (N-p)p) \end{split}$$

où on a utilisé le fait que $b_p - b_{p+1}$ intervient N - p fois dans la première somme, p fois dans la deuxième, d'où

$$\sum_{n=1}^{N} |b_n| \le \left| \sum_{n=1}^{N} b_n \right| + \sum_{p=1}^{N-1} 2p(b_p - b_{p+1})$$

(en majorant N-p par N) On a donc l'inégalité demandée (p et n sont des variables muettes); on en déduit que $\sum_{n=1}^{N} |b_n|$ est majorée donc la série $\sum b_n$ est absolument convergente.

En conclusion la suite $(a_n)_{n\in\mathbb{N}}$ est à variations bornées et donc convergente.

- 2. La première inégalité est évidente car la série $\sum b_n$ est convergente. La deuxième est tout aussi évidente car $a_0 a_N = \sum_{i=1}^{N} b_n$ et en passant à la limite dans l'inégalité précédente, on peut conclure.
- 3. En utilisant l'égalité de la question O.2, on a

$$Nb_{N+1} = \sum_{n=1}^{N} b_n - \sum_{n=1}^{N-1} nd_n$$

donc $(Nb_{N+1})_{N\in\mathbb{N}}$ a une limite et cette limite ne peut être que 0 (sinon $\sum b_n$ divergerait) d'où, quand N tend vers l'infini

$$\sum_{n=1}^{\infty} n d_n = \sum_{n=1}^{\infty} b_n.$$