Devoir libre $n^{\circ}06$ Correction

N'hésitez pas de me signaler les erreurs rencontrées.

Première partie

- **1.** La linéairité de f résulte de celle de u. Il est clair que Im(f) = Vect(A), d'où rg(f) = 1.
- **2.** Notons Sp(f) l'ensemble des valeurs propres de f. Supposons $Sp(f) \neq \emptyset$ Soit $\lambda \in \operatorname{Sp} f$, alors il existe $x \in E \setminus \{0\}$ tel que $f(x) = \lambda x$ ou encore $u(x)(\lambda - u(A)) = 0$.
 - Si u(x) = 0, alors f(x) = 0, donc 0 est valeur propre de f et le sous-espace propre associé $E_0 = \ker u$.
 - Si $u(x) \neq 0$, alors $\lambda = u(A)$ et on a f(A) = u(A)A, le vecteur propre associé à u(A) est donc A, d'où le sous-espace propre associé $E_{u(A)} = \text{Vect}(A)$.
- 3. On a rg f=1, c'est-à-dire dim ker f=n-1, donc 0 est valeur propre d'ordre au moins n-1, d'où f est diagonalisable si et seulement si $u(A) \neq 0$.
- **4.** (a) Soit $g \in \mathcal{L}(E)$ de rang 1 et soit $B \in E$ tel que Im g = Vect(B), d'où :

$$\forall x \in E, \exists l_x \in \mathbb{R} : g(x) = l_x B$$

On vérifie facilement que l'application $v: x \mapsto l_x$ est une forme linéaire sur E, non nulle car l'endomorphisme g est non nul. Donc on a : $\forall x \in E, g(x) = v(x)B$

- (b) On a rg = 1 ou encore $\dim \ker g = n 1$, et on a aussi g(B) = v(B)B et par conséquent g est diagonalisable si et seulement si $v(B) \neq 0$ ce qui est équivalent à $g^2 \neq 0$ à cause de l'égalité $g^2(B) = (v(B))^2 B$.
- (c) Soit $(e_1, e_2, ... e_{n-1})$ une base de $\ker g$, alors $(e_1, e_2, ... e_{n-1}, B)$ est une base de E et dans cette base la matrice de *q* s'écrit :

$$\left(\begin{array}{cccc}
0 & & & \\
& 0 & & \\
& & \ddots & \\
& & & \alpha
\end{array}\right)$$

avec $\alpha = v(B) \neq 0$.

(d) Dans ce cas on a g(B) = 0, donc on compléte B en une base $(B, e_2, ...e_{n-1})$ de $\ker g$, considérons ensuite un vecteur $e_n \in E : g(e_n) = v(e_n)B, v(e_n) \neq 0$.

Donc
$$(B,e_2,...e_{n-1},e_n)$$
 est une base de E dans laquelle la matrice de g s'écrit :

$$\left(\begin{array}{cccc}
0 & & & 1 \\
 & 0 & & \\
 & & \ddots & \\
 & & & 0
\end{array}\right)$$

5. Soient M et N deux matrices de rang 1. Supposons que M et N sont semblables, alors il existe $P \in \mathcal{GL}_n(R)$ tel que $M = P^{-1}NP$. D'où

$$\operatorname{tr}(M) = \operatorname{tr}(P^{-1}NP) = \operatorname{tr}(NPP^{-1}) = \operatorname{tr}(N).$$

 $\operatorname{tr}(M)=\operatorname{tr}(F),$ Inversement, $\operatorname{si}\operatorname{tr}M=\operatorname{tr}N\operatorname{et}\operatorname{si}M^2\neq 0$, alors il existe $P\in\operatorname{GL}_n(R)$ tel que $M=P^{-1}\begin{pmatrix}0&&&\\&\ddots&&\\&&&1\end{pmatrix}$ Pet la condition $\operatorname{tr} M = \operatorname{tr} N$ entraı̂ne que $N^2 \neq 0$. Donc il existe $Q \in \operatorname{\mathbf{GL}}_n(R) : N = Q^{-1} \begin{pmatrix} 0 \\ & \ddots \end{pmatrix}$

D'où $Q^{-1}PM(Q^{-1}P)^{-1} = N$, donc M et N sont semblables.

Si
$$M^2 = N^2 = 0$$
 les deux matrices M et N sont semblables à
$$\begin{pmatrix} 0 & & 1 \\ & 0 & \\ & & \ddots & \\ & & & 0 \end{pmatrix}$$

6. On a $\operatorname{tr} M = \operatorname{tr} N = 0$, donc les deux matrices M et N sont semblables.

Deuxième partie

- **1.** Notons g la restriction de h à $\ker u$, $\forall x \in \ker u$, g(x) = u(A)x, donc g est homothétie de rapport u(A). D'autre par si $x \in \ker h$, alors u(A)x = u(x) et donc $x \in \operatorname{Vect}(A)$, d'où $\ker h = \operatorname{Vect}(A)$.
- **2.** Pour tout $x \in E$, $u \circ h(x) = u(A)u(x) u(x)u(A) = 0$, donc $\operatorname{Im} h \subset \ker u$ et comme $\operatorname{dim} \operatorname{Im} h = n 1$ alors $\operatorname{Im} h = \ker u$.
- **3.** Supposons que $Sp(h) \neq \emptyset$.

Soit $\lambda \in sp(h)$. Alors il existe $x \neq 0$: $u(A)x - u(x)A = \lambda x$, c'est-à-dire $(u(A) - \lambda)x = u(x)A$.

- Si $\lambda \neq u(A)$, alors $x \in \text{Vect}(A)$ et on a aussi h(A) = 0. Donc $\lambda = 0$ et $E_0 = \text{Vect}(A)$.
- \bullet Si $\lambda = u(A)$, alors u(x) = 0, d'où $E_{u(A)} = \ker u$.

Si dim E est de dimension finie, h est diagonalisable car dim $E_0 = 1$ et dim $E_{u(A)} = n - 1$.

4. (a) Soit $x \in E \setminus \{0\}$ une solution non nulle de l'équation (1). Alors $x \in Vect(A)$, d'autre part pour tout $\lambda \in \mathbb{R}^*$, on a :

$$\alpha(\lambda A) - u(\lambda A)A = 0$$

Donc si $\alpha \neq u(A)$ l'équation en question n'admet que la solution nulle et si $\alpha = u(A)$ l'espace de solutions est la droite vectorielle $\operatorname{Vect}(A)$.

(b) Si x_0 est solution de (2), alors $x \in E$ est solution de (2) si et seulement si $x - x_0$ est solution de (1). Donc l'équation (2) admet des solutions non triviales si et seulement si $\alpha = u(A)$.

D'autre part si x est solution de (2), alors u(A)x - u(x)A = B c'est-à-dire $x \in F = \frac{1}{u(A)}B + \text{Vect}(A)$.

Réciproquement, soit $y \in F, y = \frac{1}{u(A)}B + \mu A$.

$$u(A)y - u(y)A = B \iff B + \mu u(A)A - \frac{u(B)}{u(A)}B - \mu u(A)A = B.$$

Donc nécessairement, u(B)=0. D'où :

- Si $\alpha \neq u(A)$, l'équation (2) admet une seule solution.
- Si $\alpha = u(A)$, et u(B) = 0, l'espace des solutions de l'équation (2) est l'espace affine $\frac{1}{u(A)}B + \operatorname{Vect}(A)$.
- 5. (a) Comme $\operatorname{tr}({}^tA A) = 0$ et $\alpha = \operatorname{tr}(A)$, alors l'espace de solutions de l'équation $\operatorname{tr}(A)x \operatorname{tr}(x)A = {}^tA A$ est $\frac{1}{tA}({}^tA A) + \operatorname{Vect}(A)$.
 - (b) Soit a la fonction définie sur $[0,\pi]$ par $a(t)=\sin(t)$. On cherche d'abord une solution particulière f_0 , si f_0 existe alors il existe $\lambda \in \mathbb{R}$ tel que $f_0(x)=\sin\left(\frac{x}{2}\right)+\lambda\sin(x)$ en remplaçant dans l'équation (4) on trouve $\lambda=-2$, d'où $f_0(x)=\sin\left(\frac{x}{2}\right)+\lambda\sin(x)$, et comme $u(a)=2\neq 1$ (1 la valeur de α) l'équation (4) admet une solution unique, c'est $x\mapsto f_0(x)=\sin\left(\frac{x}{2}\right)+\lambda\sin(x)$

••••••