Devoir libre $n^{\circ}07$ Correction

N'hésitez pas de me signaler les erreurs rencontrées.

• • • • • • • • •

1. Soit
$$x = \sum_{i=0}^{m-1} \alpha_i (u - \lambda \mathrm{id}_E)^i(a) \in F$$
. On a

$$u(x) = \sum_{i=0}^{m-1} \alpha_i u \left[(u - \lambda i d_E)^i(a) \right]$$
(1)

$$= \sum_{i=0}^{m-1} \alpha_i (u - \lambda \mathrm{id}_E)(u - \lambda \mathrm{id}_E)^i(a) + \sum_{i=0}^{m-1} \alpha_i \lambda (u - \lambda \mathrm{id}_E)^i(a)$$
 (2)

$$= \sum_{i=0}^{m-2} \alpha_i (u - \lambda i d_E)^{i+1}(a) + \sum_{i=0}^{m-1} \alpha_i \lambda (u - \lambda i d_E)^i(a)$$
 (3)

 $\operatorname{car} (u - \lambda \operatorname{id}_E)^m = 0$. Donc $u(x) \in F$ et par conséquent $u(F) \subset F$.

D'autre part, soit $(\alpha_0, \alpha_1, ..., \alpha_{m-1}) \in \mathbb{C}^n$ tel que $\sum_{i=0}^{m-1} \alpha_i (u - \lambda \mathrm{id}_E)^i(a) = 0$. Appliquons $(u - \lambda \mathrm{id}_E)^{m-1}$ à

l'égalité précédente, on obtient

$$\alpha_0(u - \mathrm{id}_E)^{m-1}(a) = 0$$

et donc $\alpha_0 = 0$.

On applique une autre fois $(u - \lambda i d_E)^{m-2}$, on obtient $\alpha_1 (u - \lambda i d_E)^{m-1} (a) = 0$ puis $\alpha_1 = 0$. De proche en proche on obtient $\alpha_i = 0$ pour tout $i \in [0, m-1]$. Donc la famille $(a, (u - \lambda i d_E)(a), ..., (u - \lambda i d_E)^{m-1}(a))$ est libre. D'où $\dim F = m$.

- **2.** Si dim E = 1, E = Vect(e) avec $e \neq 0$. Le résultat est donc trivial.
- 3. On suppose que u n'est pas inversible.
 - (a) On a $u(E) \subset F$, donc $u(F) \subset F$. Alors on peut considérer l'endomorphisme v induit par u sur F. Appliquons l'hypothèse de récurrence à l'endomorphisme v. Donc il existe M_j ($1 \le j \le k$) des sousespaces cycliques tels que $F = \bigoplus_{i=1}^k M_j$. Les M_j étant choisis de telle sorte que $\dim M_j \le \dim M_{j+1}$ pour

 $1 \le j \le k-1$.

(b) i. Supposons S est non vide. On a $u(y) \in F$ puisque $u(E) \subset F$. Donc il existe des scalaires α_{lj} tels que :

$$u(y) = \sum_{j=1}^{k} \sum_{l=0}^{m_j} \alpha_{lj} (u - \lambda_j i d_E)^l(a_j)$$
(4)

$$= \sum_{j \in S} \sum_{l=0}^{m_j} \alpha_{lj} (u - \lambda_j \mathrm{id}_E)^l(a_j) + \sum_{j \notin S} \sum_{l=0}^{m_j} \alpha_{lj} (u - \lambda_j \mathrm{id}_E)^l(a_j)$$
 (5)

$$= \sum_{j \in S} \alpha_{0j} a_j + \sum_{j \in S} \sum_{l=1}^{m_j} \alpha_{lj} u^l(a_j) + \sum_{j \notin S} \sum_{l=0}^{m_j} \alpha_{lj} (u - \lambda_j i d_E)^l(a_j)$$
 (6)

Pour le deuxième terme, $\sum_{j \in S} \sum_{l=1}^{m_j} \alpha_{lj} u^l(a_j) = u \left(\sum_{j \in S} \sum_{l=1}^{m_j} \alpha_{lj} u^{l-1}(a_j) \right) \in u(F)$ et pour le troisième terme il suffit de montrer que $a_j \in u(F)$ pour tout $j \notin S$, car si $a_j \in u(F)$, c'est-à-dire $a_j = u(b_j)$

pour un certain $b_i \in F$, alors

$$(u - \lambda_j \mathrm{id}_E)^l(a_j) = u\left((u - \lambda_j \mathrm{id}_E)^l(b_j)\right) \in u(F).$$

Soit $j \notin S$, montrons donc que $a_j \in u(F)$. On a :

$$a_j = -\lambda_j^{-1}(u - \lambda_j \mathrm{id}_E)(a_j) + \lambda_j^{-1}u(a_j)$$
(7)

$$= -\lambda_j^{-1}(u - \lambda_j \mathrm{id}_E) \left(-\lambda_j^{-1}(u - \lambda_j \mathrm{id}_E)(a_j) + \lambda_j^{-1}u(a_j) \right) + \lambda_j^{-1}u(a_j)$$
(8)

$$= (-\lambda_j)^{-2} (u - \lambda_j id_E)^2(a_j) - \lambda_j^{-2} (u - \lambda_j id_E) u(a_j) + \lambda_j^{-1} u(a_j)$$
(9)

On applique une autre fois a_j dans la formule précédente et de proche en proche, on obtient :

$$a_j = \sum_{l=0}^{m_j - 1} (-1)^l \lambda_j^{-l-1} (u - \lambda_j \mathrm{id}_E)^l u(a_j)$$
(10)

$$= u \left(\sum_{l=0}^{m_j - 1} (-1)^l \lambda_j^{-l-1} (u - \lambda_j \mathrm{id}_E)^l (a_j) \right)$$
 (11)

 $\operatorname{car} (u - \lambda_j \operatorname{id}_E)^{m_j} (a_j) = 0.$

Donc $u(y) - \sum_{j \in S} \alpha_{oj} a_j \in u(F)$.

ii. Si S est vide, la même technique faite à a_i montre que $u(y) \in u(F)$.

- (c) Si $z \in F$ tel que u(z) = u(y), alors $z y \neq 0$ et $z h \notin F$ sinon y serait dans F. Donc Vect(y z) est un supplémentaire de F, d'où $E = F \oplus \text{Vect}(y z)$.
- (d) Soit $x \in H = \bigoplus_{j \in S, j \le p-1} M_j$, donc il existe des scalaires β_{kj} tels que $x = \sum_{j \in S, j \le p-1} \sum_{k=0}^{m_j-1} \beta_{kj} u^k(a_j)$, donc

$$u(x) = \sum_{j \in S, j \le p-1} \sum_{k=0}^{m_j-1} \beta_{kj} u^{k+1}(a_j) \in H \text{ et } u(H) \subset H.$$

De plus
$$u^{m_p}(x) = \sum_{j \in S, j \le p-1} \sum_{k=0}^{m_j-1} \beta_{kj} u^{k+m_p}(a_j) = 0$$
 puisque $u^{l+m_p}(a_j) = 0$, d'où $u^{m_p}(H) = \{0\}$.

Puisque
$$y-z=\alpha_p t$$
, alors $u(y-z)=\alpha_p u(t)=\sum_{j\in S}\alpha_j a_j$, donc

$$u(t) = \sum_{j \in S} \frac{\alpha_j}{\alpha_p} a_j = \sum_{j \in S, j \neq p} \frac{\alpha_j}{\alpha_p} + a_p = \sum_{j \in S, j < p-1} \frac{\alpha_j}{\alpha_p} + a_p.$$

Donc $u(t) \notin H$, car sinon a_p serait dans H ce qui est absurde.

Comme $u(t) \in H \oplus M_p$, alors il suffit de montrer que la famille $(u^i(t))_{1 \le i \le m_p}$ est libre. En effet, soit

$$\beta_1, \beta_2, ..., \beta_{m_p}$$
 des scalaires tels que $\sum_{i=1}^{m_p} \beta_i u^i(t) = 0$, donc

$$0 = \sum_{i=1}^{m_p} \beta_i u^{i-1} \left(\sum_{j \in S} \frac{\alpha_j}{\alpha_p} a_j \right) = \sum_{i=1}^{m_p} \sum_{j \in S, j \le p-1} \beta_i u^{i-1} \left(\frac{\alpha_j}{\alpha_p} a_j \right) + \sum_{i=1}^{m_p} \beta_i u^{i-1} (a_p),$$

le premier terme est dans H, le second est dans M_p , donc $\sum_{i=1}^{m_p} \beta_i u^{i-1}(a_p) = 0$ ce qui implique $\beta_i = 0$ pour $i = 1, 2, ..., m_p$. Donc

$$H \oplus M_p = H \oplus \operatorname{Vect}\left(u(t), u^2(t), ..., u^{m_p}(t)\right).$$

(e) On a
$$t \notin F$$
 car $y \notin F$, donc $E = F \oplus \mathrm{Vect}(t)$. D'autre part $F = \bigoplus_{j \neq p} M_j \oplus M_p$, d'où :

$$E = \bigoplus_{j \neq p} M_j \oplus M_p \oplus \operatorname{Vect}(t) = \bigoplus_{j \neq p} M_j \oplus \operatorname{Vect}(t, u(t), ..., u^{m_p}(t))$$

- **4.** $\mathbb C$ étant algébriquement clos, alors u admet au moins une valeur propre λ . Donc $v=u-\lambda \mathrm{id}_E$ est non inversible, donc il suffit de considérer l'endomorphisme v.
- 5. On a $u(e_1) = e_3$, $u^2(e_1) = u(e_3) = e_4$, $u^3(e_1) = u(e_4) = 0$, $u(e_2) = e_1$, $u^2(e_2) = u(e_1) = e_3$, $u^3(e_2) = e_4$, d'où : $\mathbb{C}^5 = \text{Vect}(e_2, u(e_2), u^2(e_2), u^3(e_2)) \oplus \text{Vect}(e_5).$

••••••