Devoir libre n°2 correction

1. Il suffit de montrer que K est une partie fermée bornée de \mathbb{R} , puisque les compacts de \mathbb{R} sont exactement les parties fermées bornées.

Il est clair que $K \subset [0,1]$, donc K est une partie bornée. Montrons que K est fermé dans \mathbb{R} , pour cela il suffit de montrer que

$$K^c = \mathbb{R}\backslash K =]-\infty, -1[\cup]1, +\infty[\cup[0,1]\backslash K$$

est un ouvert dans \mathbb{R} . Les intervalles $]-\infty,-1[$ et $]1,+\infty[$ sont deux ouverts de \mathbb{R} . Démontrons que $[0,1]\backslash K$ est aussi ouvert.

Soit $a \in [0,1] \setminus K$. On a donc $a \neq 0$ et $\frac{1}{a} \in \mathbb{R}^+ \setminus \mathbb{N}$. Il existe donc $n_0 \in \mathbb{N}^*$ tel que $n_0 < \frac{1}{a} < n_0 + 1$. On a donc $\frac{1}{n_0 + 1} < a < \frac{1}{n_0}$.

Posons $\alpha = \frac{1}{2}\inf\left(a - \frac{1}{n_0 + 1}, \frac{1}{n_0} - a\right)$. Alors $\forall x \in \mathbb{R}$,

$$|x - a| < \alpha \Longrightarrow x \in ([0, 1] \backslash K).$$

- $[0,1]\backslash K$ est donc un ouvert dans \mathbb{R} .
- **2.** Soit f une application de K dans \mathbb{R} , f est continue si, et seulement si, $\forall x_0 \in K$, $\forall \varepsilon > 0$, $\exists \alpha > 0$ tel que

$$\forall x \in K, |x - x_0| < \alpha \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

Si $x_0 \neq 0$ et $x_0 \in K$. Alors il existe $n_0 \in \mathbb{N}^*$ tel que $x_0 = \frac{1}{n_0}$. Alors, pour $\alpha < \frac{1}{n_0} - \frac{1}{n_0 + 1}$, on a $|x - x_0| < \alpha$ et $x \in K \iff x = x_0$.

Il en résulte que $\forall \varepsilon > 0$,

$$\forall x \in K, |x - x_0| < \alpha \Longrightarrow |f(x) - f(x_0)| = 0 < \varepsilon.$$

Ceci montre que f est continue sur $K \setminus \{0\}$. Donc f est continue sur K si, et seulement si, f est continue en 0.

Supposons f continue en 0. On a $\lim_{n\to\infty}\frac{1}{n}=0$, donc $\lim_{n\to\infty}f\left(\frac{1}{n}\right)=f(0)$.

Réciproquement, supposons que la suite $(u_n)_{n\in\mathbb{N}^*}$ soit convergente et que $\lim_{n\to\infty}u_n=f(0)$.

Soit $\varepsilon > 0$. Alors $\exists n_0 \in \mathbb{N}^*$ tel que

$$n \ge n_0 \Longrightarrow |u_n - f(0)| < \varepsilon.$$

On en déduit que pour $x \in K$ et $x < \frac{1}{n_0}$ on a $|f(x) - f(0)| < \varepsilon$. f est donc continue en 0.

- 3. (a) Si f est continue sur K, alors, puisque K est un compact, f bornée, donc $\sup_{x \in K} |f(x)| < +\infty$. Donc l'application $f \longmapsto \|f\| = \sup_{x \in K} |f(x)|$ est bien définie. On peut vérifier facilement que cette application définit une norme sur $\mathscr{C}(K,\mathbb{R})$.
 - (b) Soit $n \in \mathbb{N}$ fixé. Pour p > n, on a $f_n\left(\frac{1}{p}\right) = 1 \frac{n}{p}$. On en déduit $\lim_{p \to \infty} f_n\left(\frac{1}{p}\right) = 1 = f_n(0)$, donc $\forall n \in \mathbb{N}^*$, $f_n \in \mathscr{C}(K, \mathbb{R})$.
 - Soit $x \in K$. Si x = 0, on a $\forall n \in \mathbb{N}^*$, $f_n(0) = 1$. On en déduit $\lim_{n \to \infty} f_n(0) = 1$.

Si $x \neq 0$, alors il existe $p \in \mathbb{N}^*$ tel que $x = \frac{1}{p}$, et donc pour tout $n \geq p$, $f_n(x) = f_n\left(\frac{1}{p}\right) = 0$. On en déduit $\lim_{n \to \infty} f_n(x) = 0$.

En conclusion, la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction f définie par :

$$f(x) = \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{si } x \in K \setminus \{0\}. \end{cases}$$

On a $\lim_{p\to\infty} f\left(\frac{1}{p}\right) = 0 \neq f(0)$, donc f n'est pas continue en 0 et donc $f\notin \mathscr{C}(K,\mathbb{R})$.

(c) Soit
$$n \in \mathbb{N}^*$$
. On a $||f_n|| = \sup_{x \in K} |f(x)| = \max\left(1, \sup_{p \in \mathbb{N}^*} \left(1 - \frac{n}{p}\right)\right) = 1$. Donc $\forall n \in \mathbb{N}^*$, $f_n \in \mathscr{B}$.

Supposons \mathscr{B} compacte. Alors il existe au moins une sous-suite de la suite $(f_n)_{n\in\mathbb{N}^*}$ qui converge dans $\mathscr{C}(K,\mathbb{R})$.

Soit $(f_{\varphi(n)})_{n\in\mathbb{N}^*}$ une telle sous-suite et soit g sa limite. On a $g\in\mathscr{C}(K,\mathbb{R})$ et $\lim_{n\to\infty}\|f_{\varphi(n)}-g\|=0$. On en déduit que $\forall x\in K$, $\lim_{n\to\infty}|f_{\varphi(n)}(x)-g(x)|=0$, c'est-à-dire $g(x)=\lim_{n\to\infty}f_{\varphi(n)}(x)$. Mais la suite $(f_{\varphi(n)}(x))_{n\in\mathbb{N}^*}$ est une suite extraite de la suite $(f_n(x))_{n\in\mathbb{N}^*}$. On a donc

$$\lim_{n \to \infty} f_{\varphi(n)}(x) = \lim_{n \to \infty} f_n(x),$$

c'est-à-dire g(x) = f(x).

On a donc g=f, ce qui est en contradiction avec l'hypothèse $g\in \mathscr{C}(K,\mathbb{R})$. Par conséquent la boule unité \mathscr{B} de $\mathscr{C}(K,\mathbb{R})$ n'est pas compacte.

4. (a) Il est clair que \mathscr{F} est non vide, car il contient la fonction nulle. Si f et g sont deux éléments de \mathscr{F} , il existe U et V des voisinages de 0 dans K tels que

$$\begin{cases} \forall x \in V, & f(x) = f(0), \\ \forall x \in U, & g(x) = g(0). \end{cases}$$

Posons $W=V\cap U$, W est un voisinage de 0 dans K. $\forall \lambda,\mu\in\mathbb{R}$, on a :

$$\forall x \in W, \ (\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x) = \lambda f(0) + \mu g(0).$$

On en déduit que $\lambda f + \mu g \in \mathscr{F}$ et donc \mathscr{F} est un sous-espace vectoriel de $\mathscr{C}(K,\mathbb{R})$.

(b) Soit $f \in \mathscr{C}(K, \mathbb{R})$. Démontrons que $\forall \varepsilon > 0$, la boule ouverte $B(f, \varepsilon)$ de centre f et de rayon ε coupe \mathscr{F} .

Soit $\varepsilon > 0$ donné. On a $\lim_{n \to \infty} f\left(\frac{1}{n}\right) = f(0)$. Il existe donc $n_0 \in \mathbb{N}^*$ tel que

$$n > n_0 \Longrightarrow \left| f(0) - f\left(\frac{1}{n}\right) \right| < \frac{\varepsilon}{2}.$$

Considérons alors la fonction $g: K \longrightarrow \mathbb{R}$ définie par :

$$\begin{cases} g(0) = f(0), \\ g\left(\frac{1}{n}\right) = f\left(\frac{1}{n}\right) & \text{si } n \le n_0, \\ g\left(\frac{1}{n}\right) = f(0) & \text{si } n > n_0. \end{cases}$$

On a
$$g \in \mathscr{F}$$
 et $\|f - g\| = \sup_{n > n_0} \left| g\left(\frac{1}{n}\right) - f\left(\frac{1}{n}\right) \right| \leq \frac{\varepsilon}{2} < \varepsilon$. Donc $g \in \mathscr{F} \cap \mathscr{B}(f.\varepsilon)$.

5. (a) Il est clair que \mathscr{H} est un sous-espace vectoriel de $\mathscr{C}(K,\mathbb{R})$. Soit $f\in\mathscr{H}^c$. On a donc $f(0)\neq 0$. Posons $\varepsilon=\frac{|f(0)|}{2}>0$. Alors $\forall g\in (K,\mathbb{R})$ telle que $\|f-g\|<\varepsilon$, on a $|f(0)-g(0)|<\varepsilon$ et donc $g(0)\neq 0$.

La boule ouverte $\mathscr{B}(f,\varepsilon)$ est donc incluse dans \mathscr{H}^c . \mathscr{H}^c est donc ouvert dans $\mathscr{C}(K,\mathbb{R})$ et, par suite, \mathscr{H} est un fermé.

(b) Soit $f \in \mathscr{C}(K,\mathbb{R})$. La fonction $g_1 = f(0)g \in \mathscr{G}$. Posons $f_1 = f - g_1$. On a

$$f_1(0) = f(0) - g_1(0) = f(0) - f(0) = 0.$$

On a donc $f_1 \in \mathcal{H}$.

Pour toute fonction $f \in \mathcal{C}(K, \mathbb{R})$, il existe donc $f_1 \in \mathcal{H}$ et $g_1 \in \mathcal{G}$ telles que

$$f = f_1 + g_1.$$

On en déduit que $\mathscr{C}(K,\mathbb{R})=\mathscr{H}+\mathscr{G}$. D'autre part, si $f\in\mathscr{H}\cap\mathscr{S}$, on a f(0)=0 et $f=\lambda g$ avec $\lambda\in\mathbb{R}$. On en déduit $f(0)=\lambda g(0)$, puis $\lambda=0$ et f=0. On a donc $\mathscr{H}\cap\mathscr{G}=\{0\}$ et par suite $\mathscr{C}(K,\mathbb{R})=\mathscr{H}\oplus\mathscr{G}$.

(c) Avec les notations précédente, la projection p est définie par :

$$\forall f \in \mathscr{C}(K, \mathbb{R}), \ p(f) = f_1.$$

On a donc p(f) = f - f(0)g. Donc il suffit de démontrer que l'application $\varphi : f \longmapsto f(0)g$ est continue. Soit f et f' deux éléments de $\mathscr{C}(K,\mathbb{R})$. On a :

$$\|\varphi(f) - \varphi(f')\| = \|f(0)g - f'(0)g\| = |f(0) - f'(0)| \le \|f - f'\|$$

Donc l'application $\varphi: f \longmapsto f(0)g$ est 1-lipshitzienne, donc elle est continue.

• • • • • • • • •