Corrigé du devoir surveillé $n^{\circ}4$ M.Tarqi

AUTOUR DES MATRICES SYMÉTRIQUES

PREMIÈRE PARTIE

1. Si A et B sont deux matrices symétriques et $\lambda \in \mathbb{R}$, ${}^t(A + \lambda B) = {}^tA + \lambda {}^tB = A + \lambda B$, donc $A + \lambda B$ est symétrique et par suite \mathscr{S}_n est un sous-espace vectoriel de \mathscr{S}_n . Soit $(E_{ij})_{1 \le i,j \le n}$ la base canonique de $\mathscr{M}_n(\mathbb{R})$ et $A = (a_{ij})_{1 \le i,j \le n} \in \mathscr{S}_n$, alors on peut écrire

$$A = \sum_{i=1}^{n} a_{ii} E_{ii} + \sum_{i < j} a_{ij} (E_{ij} + E_{ji}),$$

car $a_{ij} = a_{ji}$. Donc la famille $\{E_{ii}, i \in [\![1,n]\!]\} \cup \{E_{ij} + E_{ji}/i < j\}$ engendre \mathscr{S}_n , de plus cette famille est libre, donc le sous-ensemble \mathscr{S}_n de $\mathscr{M}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{R})$ de dimension $n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$.

2. La relation $M \leq N$ se traduit par l'inégalité $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ Q_N(X) - Q_M(X) \geq 0$ dans \mathbb{R} . La forme quadratique nulle est positive donc, pour tout $M \in \mathcal{S}_n$, $Q_M - Q_M \geq 0$, c'est-à-dire $M \leq M$. La relation < est reflexive.

Si M et N sont dans \mathscr{S}_n telles que $M \leq N$ et $N \leq M$, on a alors $Q_M \leq Q_N$ et $Q_N \leq Q_M$ donc $Q_M = Q_N$ puis M = N. La relation \leq est symétrique.

Enfin, soit M, N et P dans \mathscr{S}_n telles que $M \leq N$ et $N \leq P$, on a alors $Q_M \leq Q_N$ et $Q_N \leq Q_P$ donc $Q_M \leq Q_P$ puis $M \leq N$. La relation \leq est transitive.

3. Soit $(v_1, v_2, ..., v_n)$ une base orthonormale de vecteurs propres de A (théorème spectral), notons λ_i la valeur propre associée au vecteur propre v_i . Soit $X \in S$, $X = \sum_{i=1}^n x_i v_i$, alors $AX = \sum_{i=1}^n \lambda_i x_i v_i$ et donc

$${}^{t}XAX = \sum_{i=1}^{n} \lambda_{i} x_{i}^{2}.$$

D'où

$$\min_{\lambda \in \operatorname{Sp}(A)} \lambda \|X\|^2 \le {}^t \! X A X \le \max_{\lambda \in \operatorname{Sp}(A)} \lambda \|X\|^2,$$

ou encore

$$\min_{\lambda \in \operatorname{Sp}(A)} \lambda \le {}^{t}XAX \le \max_{\lambda \in \operatorname{Sp}(A)} \lambda$$

Ceci montre que $\{{}^t\!XAX/\|X\|=1\}$ est une partie bornée de $\mathbb R$, et que $\max_{\lambda\in\operatorname{Sp}(A)}\lambda$ et $\min_{\lambda\in\operatorname{Sp}(A)}\lambda$ sont respectivement son maximum et son minimum (ils sont atteints).

- 4. (a) Soit $\lambda_0 \in \operatorname{Sp}(A)$ tel que $|\lambda_0| = \rho(A)$ et $X_0 \in S$ tels que $AX_0 = \lambda_0 X_0$, donc ${}^t X_0 A X_0 = \lambda_0$ et en tenant compte de la question précédente, on a donc $\mathscr{N}(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda| = \rho(A)$.
 - (b) Soit $A \in \mathscr{S}_n$ tel que $\mathscr{N}(A) = 0$, donc $\operatorname{Sp}(A) = \{0\}$ et comme A est diagonalisable, alors A = 0. Soit $\alpha \in \mathbb{R}$ et $A \in \mathscr{S}_n$, on a $\operatorname{Sp}(\alpha A) = \{\alpha \lambda / \lambda \in \operatorname{Sp}(A)\}$, donc $\max_{\lambda \in \operatorname{Sp}(\alpha A)} |\lambda| = |\alpha| \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$, c'est-à-dire $\mathscr{N}(\alpha A) = |\alpha| \mathscr{N}(A)$. Soit $A, B \in \mathscr{S}_n$ et $X \in S$, on a :

$$|{}^t\!X(A+B)X| \leq |{}^t\!XAX| + |{}^t\!XBX| \leq \max_{\lambda \in \operatorname{Sp}(A)} |\lambda| + \max_{\lambda \in \operatorname{Sp}(B)} |\lambda| = \mathscr{N}(A) + \mathscr{N}(B).$$

D'où, par passage à la borne supérieure, $\mathcal{N}(A+B) \leq \mathcal{N}(A) + \mathcal{N}(B)$. En conclusion \mathcal{N} est une norme sur \mathcal{S}_n .

(c) Soit $A \in \mathscr{S}_n$ et $(v_1, v_2, ..., v_n)$ une base orthonormale de vecteurs propres de A. Posons $\operatorname{Sp}(A) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ (λ_i valeur propre associée à v_i) et soit $X = \sum_{i=1}^n x_i v_i$, $Y = \sum_{i=1}^n y_j v_j$ deux vecteurs de \mathbb{R}^n , on a :

$$\begin{split} |B_A(X,Y)| &= |{}^t\!XAY| = |(X|AY)| \\ &\leq \|X\| \|AY\| = \|X\| \left(\sum_{j=1}^n \lambda_j^2 y_j^2\right)^{\frac{1}{2}} \quad \text{l'inégalité de Cauchy-Schwarz} \\ &\leq \max_{\lambda \in \operatorname{Sp}(A)} |\lambda| \|X\| \|y\| = \mathscr{N}(A) \|X\| \|Y\|. \end{split}$$

- (d) D'après ce qui précède, on a pour tout $X,Y\in S$, $|B_A(X,Y)|\leq \mathcal{N}(A)$, d'autre part si $|\lambda_0|=\max_{\lambda\in\mathrm{Sp}(A)}|\lambda|$ et $X_0\in S$ tel que $AX_0=\lambda_0X_0$, alors $|B_A(X_0,X_0)|=|\lambda_0|$, donc $\max\{|B_A(X,Y)|/X,Y\in S\}=\mathcal{N}(A)$.
- (e) Il suffit de remarquer que $Sp(A^k) = {\lambda^k / \lambda \in Sp(A)}.$
- (f) Si $A \in \mathscr{S}_n$ et $r \in \mathbb{R}^+$, alors

$$\mathcal{N}(A) \leq r \quad \Leftrightarrow \quad \forall X \in S, \ |^t X A X| \leq r$$

$$\Leftrightarrow \quad \forall X \in S, \ -^t X (r I_n) X \leq {}^t X A X \leq {}^t X (r I_n) X$$

$$\Leftrightarrow \quad \forall X \in S, \ -Q_{r I_n}(X) \leq Q_A(X) \leq Q_{r I_n}(X)$$

$$\Leftrightarrow \quad -r I_n \leq A \leq r I_n.$$

5. (a) \mathcal{N}' n'est autre que la norme subordonnée associée à la norme euclidienne $\|.\|$. D'autre part, si $M, N \in \mathcal{S}_n$ et $X \in S$, alors on a

$$||MNX|| < \mathcal{N}'(M)||NX|| < \mathcal{N}'(M)\mathcal{N}'(N)||X|| < \mathcal{N}'(M)\mathcal{N}'(N).$$

En passant à la borne supérieure, on en déduit $\mathcal{N}'(MN) \leq \mathcal{N}'(M)'(N)$.

(b) Si $A={}^t\!MM$, alors ${}^t\!A=A$, donc $A\in\mathscr{S}_n$, de plus si $X\in\mathbb{R}^n$, $\|{}^t\!XAX\|=\|MX\|^2\geq 0$ donc $O_n\leq A$. D'autre part si $X\in\mathbb{R}^n$ tel que MX=0, alors AX=0, donc $\ker(M)\subset\ker(S)$, si AX=0, alors $\|MX\|=0$, donc $\ker(A)\subset\ker(M)$, par conséquent $\ker(A)=\ker(M)$, ceci montre aussi que A et M ont le même rang. On a :

$$\sup_{X \in S} |{}^t X A X| = \sup_{X \in S} ||MX||^2,$$

donc
$$\mathcal{N}(A) = \mathcal{N}'(M)^2$$
.

6. Soit $(A_k)_{k \in \mathbb{N}}$ donc une suite de matrices symétriques croissante et majorée par M pour la relation proposée. On a donc : pour tout $k \in \mathbb{N}$, $A_{k+1} - A_k$ positive donc pour toute colonne X,

$${}^{t}XMX > {}^{t}XA_{k+1}X > {}^{t}XA_{k+1}X.$$

Donc pour toute colonne X, la suite réelle $({}^tXA_kX)_{k\in\mathbb{N}}$ est croissante et majorée, donc converge. Soit Q(X) sa limite. Montrons que Q est une forme quadratique et que, si $A\in\mathscr{S}_n$ la matrice associée à Q, $\lim_{k\to\infty}A_k=A$.

On note $Q_k = Q_{A_k}$ et B_k la forme polaire de Q_k :

$$\forall (X,Y) \in (\mathbb{R}^n)^2, \ B_k(X,Y) = \frac{1}{2}(Q_k(X+Y) - Q_k(X) - Q_k(Y))$$

Puisque $(Q_k)_{k\in\mathbb{N}}$ converge simplement sur \mathbb{R}^n vers Q, on obtient :

$$\forall (X,Y) \in (\mathbb{R}^n)^2$$
, $\lim_{k \to \infty} B_k(X,Y) = \frac{1}{2}(Q(X+Y) - Q(X) - Q(Y))$

Ce qui prouve la convergence simple sur $(\mathbb{R}^n)^2$ de la suite d'applications $(B_k)_{k\in\mathbb{N}}$ vers

$$B: (X,Y) \mapsto \frac{1}{2}(Q(X+Y) - Q(X) - Q(Y)).$$

Par passage à la limite, on peut vérifier que B est symétrique et bilinéaire. De même $Q_k(X) = B_k(X, X)$ donne, à la limite, Q(X) = B(X, X). Ainsi Q est une forme quadratique sur \mathbb{R}^n de forme polaire B. On notera A sa matrice dans la base canonique de \mathbb{R}^n .

Nous allons maintenant montrer que la suite $(A_k)_{k\in\mathbb{N}}$ converge vers A.

PREMIÈRE MÉTHODE : Montrons que $(A_k)_{k\in\mathbb{N}}$ converge vers A pour la norme \mathcal{N}' . Pour tout $X\in\mathbb{R}^n$, la suite $(Q_k(X))_{k\in\mathbb{N}}$ est croissante de limite Q(X), en conséquence $\forall k\in\mathbb{N}, Q(X)-Q_k(X)\geq 0$, donc $A-A_k\geq 0$. Par la suite, nous posons :

$$\forall k \in \mathbb{N}, \ \varphi_k = Q - Q_k, \quad \Phi_k = A - A_k \ et \ \lambda_k = \rho(\Phi_k).$$

Soit $U_k \in S$ tel que $\Phi U_k = \lambda_k U_k$, avec ces notations nous obtenons :

$$\mathcal{N}'(\Phi_k) = \varphi_k(U_k) = \lambda_k$$

Montrons alors que la suite $(\varphi_k(U_k))_{k\in\mathbb{N}}$ est décroissante. En effet, l'inégalité $\varphi_{k+1}\leq \varphi_k$ donne $\varphi_{k+1}(U_{k+1})\leq \varphi_k(U_{k+1})$ et $\varphi_k(U_k)=\max_{X\in S}\varphi_k(X)$ donne $\varphi_k(U_{k+1})\leq \varphi_k(U_k)$, donc $\varphi_{k+1}(U_{k+1})\leq \varphi_k(U_k)$.

Comme il s'agit d'une suite réelle positive, on en déduit qu'elle est convergente.

S étant compacte, donc de la suite $(U_k)_{k\in\mathbb{N}}$ on peut extraire une suite $(U_{p_k})_{k\in\mathbb{N}}$ convergente dans S. Posons $U=\lim_{k\to\infty}U_{p_k}$.

Pour tout $k \in \mathbb{N}$, $(X, Y) \in (\mathbb{R}^n)^2$,

$$\varphi_k(X) - \varphi_k(Y) = {}^t X \Phi_k X - {}^t Y \Phi_k Y$$

= ${}^t X \Phi_k (X - Y) - {}^t (X - Y) \Phi_k Y$
= $(X | \Phi_k (X - Y)) - (X - Y | \Phi_k Y)$

On obtient d'après l'inégalité de Cauchy-Shwartz :

$$|\varphi_k(X) - \varphi_k(Y)| \le 2||X|| ||X - Y|| \mathcal{N}'(\Phi_k)$$

Sachant que la suite $\mathcal{N}'(\Phi_k)_{k\in\mathbb{N}}$ est décroissante positive, on a $\forall k\in\mathbb{N}$:

$$\mathcal{N}'(\Phi_k) \le \mathcal{N}'(\Phi_0) = \lambda_0$$

donc $\forall (X,Y) \in (\mathbb{R}^n)^2$

$$|\varphi_k(X) - \varphi_k(Y)| \le 2\lambda_0 ||X - Y||.$$

On en déduit $\forall k \in \mathbb{N}$,

$$|\varphi_{p_k}(U_{p_k}) - \varphi_{p_k}(U)| \le 2\lambda_0 ||U_{p_k} - V||.$$

et donc

$$\lim_{k \to \infty} (\varphi_{p_k}(U_{p_k}) - \varphi_{p_k}(U)) = 0$$

Or la convergence simple de la suite d'aplications $(\varphi_k)_{k\in\mathbb{N}}$ vers 0 donne $\lim_{k\to\infty} \varphi_{p_k}(U)=0$, d'où finalement $\lim_{k\to\infty} \varphi_{p_k}(U_{p_k})=0$, puisque la suite $(\varphi_{p_k}(U_{p_k})_{k\in\mathbb{N}})$ est extraite de la suite $(\varphi_k(U_k)_{k\in\mathbb{N}})$, les deux suites ont la même limite et enfin $\lim_{k\to\infty} \varphi_k(U_k)=0$, c'est-à-dire

$$\lim_{k \to \infty} \mathcal{N}'(A - A_k) = 0.$$

On a ainsi prouvé que la suite $(A_k)_{k\in\mathbb{N}}$ converge vers A dans l'espace vectoriel normé $(\mathscr{S}_n, \mathscr{N}')$, donc elle converge pour toute autre norme sur $\mathscr{M}_n(\mathbb{R})$, puisque toutes les nomres sont équivalentes sur $\mathscr{M}_n(\mathbb{R})$.

PREMIÈRE MÉTHODE: Soit $(e_1,e_2,...,e_n)$ la base canonique de \mathbb{R}^n , l'élément $a_{ij}^{(k)}$ de la matrice A_k est égal à $B_k(e_i,e_j)$. Les suites $(a_{ij}^{(k)})_{k\in\mathbb{N}}$ sont donc convergentes, on peut designer leurs limites par a_{ij} . Soit la matrice $A=(a_{ij})_{1\leq i,j\leq n}$, l'égalité $a_{ij}^{(k)}=a_{ji}^{(k)}$ est vraie pour tout $k\in\mathbb{N}$, donc par passage à la limite, on obtient $a_{ij}=a_{ji}$, donc A est symétrique. Cela montre que la convergence de la suite $(A_k)_{k\in\mathbb{N}}$ vers A au sens de la norme définie par $\|M\|=\sup_{i,j}|m_{ij}|$ si $M=(m_{ij})_{1\leq i,j\leq n}$, puis on conclut avec l'equivalence des normes.

- 7. (a) Pour tout $x \in \mathbb{R}$ et $A \in \mathcal{S}_n$, on a : $\forall k \in \mathbb{N}$, $\mathcal{N}(x^k A^k) = |x|^k \mathcal{N}(A)^k = |rx|^k$, donc la série $\sum_{k \in \mathbb{N}} x^k A^k$ converge si, et seulement si, |xr| < 1.
 - (b) On a, pour tout $N \in \mathbb{N}$:

$$(I_n - xA)\left(\sum_{k=0}^N x^k A^k\right) = \sum_{k=0}^n x^k A^k - \sum_{k=0}^n (xA^{k+1}) = \sum_{k=0}^n x^k A^k - \sum_{k=0}^{N+1} x^k A^k = I_n - (xA)^{N+1},$$

de même $\left(\sum_{k=0}^n x^k A^k\right) (I_n - xA) = I_n - (xA)^{n+1}$. Donc on a :

(*)
$$(I_n - xA) \left(\sum_{k=0}^N x^k A^k \right) = \left(\sum_{k=0}^N x^k A^k \right) (I_n - xA) = I_n - (xA)^{n+1}.$$

Comme le produit $(M, N) \mapsto MN$ est continue de $\mathscr{M}_n(\mathbb{R})^2$ dans $\mathscr{M}_n(\mathbb{R})$ et la suite $((xA)^k)_{k \in \mathbb{N}}$ tend vers 0, alors par passage à la limite dans les deux membres de (*), on obtient

$$(I_n - xA)S_A(X) = S_A(X)(I_n - xA) = I_n.$$

Ceci montre que $I_n - xA$ est inversible et que $S_A(x) = \sum_{k=0}^{\infty} x^k A^k = (I_n - xA)^{-1}$.

Pour tout $N \in \mathbb{N}$, on a $\operatorname{tr}\left(\sum_{k=0}^N x^k A^k\right) = \sum_{k=0}^N \operatorname{tr}(A^k) x^k$, et comme l'application tr est continue (forme linéaire en dimension finie), donc on obtient par passage à la limite:

$$\operatorname{tr}\left(\sum_{k=0}^{\infty} x^k A^k\right) = \sum_{k=0}^{\infty} \operatorname{tr}(A^k) x^k.$$

Considérons le polynôme $P_A(X) = \det(XI_n - A)$, c'est-à-dire $P_A(X) = (-1)^n \chi_A(X)$. Soit $B = {}^t\!\text{Co}(XI_n - A)$ la transposée de la comatrice de $XI_n - A$, on sait que B et $XI_n - A$ sont liés par le relation $B(XI_n - A) = \det(XI_n - A)I_n$. D'autre part, on sait que la dérivée d'un déterminant $\det(\Delta)$ est le somme des déterminants obtenus en dérivant successivement chaque colonne de la matrice Δ . Ici $\Delta = XI_n - A$, les dérivées ne portent que sur les termes de la diagonale principale. Les déterminants obtenus sont exactement les cofacteurs des éléments de la diagonale principale de $XI_n - A$, c'est-à-dire les éléments de diagonaux de la matrice B. En sommant on obtient la formule

$$\operatorname{tr}\left[{}^{t}\!\operatorname{Co}(XI_{n}-A)\right]=P_{A}'(X)$$

Revenons maintenant à la question, on a dans ces conditions avec $y = \frac{1}{x}, x \neq 0$:

$$(yI_n - A)^{-1} = \frac{1}{\det(yI_n - A)}^t \operatorname{Co}(yI_n - A)$$

D'où en prenant la trace, on obtient :

$$\operatorname{tr}\left[(yI_n - A)^{-1}\right] = \frac{P_A'(y)}{P_A(y)}$$

D'où, en remplaçant y par $\frac{1}{x}$, la formule :

$$x\operatorname{tr}(I_n - xA)^{-1} = \frac{P_A'\left(\frac{1}{x}\right)}{P_A\left(\frac{1}{x}\right)}$$

ou encore

$$\operatorname{tr}(S_A(x)) = \frac{1}{x} \frac{\chi_A'\left(\frac{1}{x}\right)}{\chi_A\left(\frac{1}{x}\right)}.$$

Pour x = 0, on vérifie facilement que $tr(S_A(0)) = tr(I_n) = n$.

(c) APPLICATION: Si b=0, $A=aI_n$ et dans ce cas $\mathcal{N}(A)=|a|$ et si |ax|<1, $S_A(X)=\frac{1}{1-ax}I_n$ et $\operatorname{tr}(S_A(x))=\frac{n}{1-ax}I_n$

Supposons $b \neq 0$. On a $A = (a - b)I_n + bJ_n$, avec J_n la matrice d'ordre n dont toutes ses éléments sont égaux à 1.

Soit

$$B = A - (a - b)I_n = bJ_n$$

B est de rang 1, donc $\dim \ker(A - (a - b)I) = n - 1$, c'est-à-dire a - b est une valeur propre de A d'ordre au moins (n - 1).

Si λ est une autre valeur propre alors on aura $\operatorname{tr}(A) = na = (n-1)(a-b) + \lambda$. Donc $\lambda = a + (n-1)b$ valeur propre simple. Comme $a + (n-1)b \neq b$ la matrice A est donc diagonalisable, de plus $\mathcal{N}(A) = \max\{|\alpha|, |\beta|\}$.

Remarque: A est symétrique réelle, donc elle est diagonalisable.

Puisque M est diagonalisable, alors le polynôme minimal est $\pi_A = (X - \alpha)(X - \beta)$, et donc

$$A^2 = (\alpha + \beta)A - \alpha\beta I_n.$$

D'après la division euclidienne de X^p de π_A il existe $Q \in \mathbb{K}[X]$, $\alpha_p, \beta_p \in \mathbb{K}$ tels que

$$X^k = \pi_A Q(X) + \alpha_k X + \beta_p.$$

Donc $A^k = \alpha_k A + \beta_k$. En prenant $X = \alpha$ et $X = \beta$, on obtient donc $\alpha_k = \frac{\beta^k - \alpha^k}{\beta - \alpha}$ et $\beta_k = \frac{\beta \alpha^k - \alpha \beta^k}{\beta - \alpha}$. Donc, pour |rx| < 1, on a :

$$S_A(x) = \sum_{k=0}^{\infty} x^k A^k = \left(\sum_{k=0}^{\infty} \alpha_k x^k\right) A + \left(\sum_{k=0}^{\infty} \beta_k x^k\right) I_n$$

On a:

$$\sum_{k=0}^{\infty} \alpha_k x^k = \sum_{k=0}^{\infty} \frac{(\beta x)^k - (\alpha x)^k}{\beta - \alpha} = \frac{1}{\beta - \alpha} \left(\frac{1}{1 - \beta x} - \frac{1}{1 - \alpha x} \right) = \frac{x}{(1 - \beta x)(1 - \alpha x)}$$

et

$$\sum_{k=0}^{\infty} \beta_k x^k = \sum_{k=0}^{\infty} \frac{\beta(\alpha x)^k - \alpha(\beta x)^k}{\beta - \alpha} = \frac{1}{\beta - \alpha} \left(\frac{\beta}{1 - \alpha x} - \frac{\alpha}{1 - \beta x} \right) = \frac{1 - (\beta + \alpha)x}{(1 - \beta x)(1 - \alpha x)}$$

D'où:

$$S_A(x) = \sum_{k=0}^{\infty} x^k A^k = \frac{x}{(1-\beta x)(1-\alpha x)} A + \frac{1-(\beta+\alpha)x}{(1-\beta x)(1-\alpha x)} I_n$$

DEUXIÈME PARTIE

8. (a) Soit X un vecteur propre associé à une valeur propre λ de A, puisque $X \neq 0$, (X|X) > 0, d'où :

$$(X|AX) = \lambda(X|X)$$

ou encore

$$\lambda = \frac{(X|AX)}{(X|X)} \ge 0.$$

Inversement si les valeurs propres de *A* sont positives, alors, dans une base de diagonalisation de *A* :

$$(X|AX) = \sum_{i=1}^{n} \lambda_i x_i^2 \ge 0.$$

- (b) Dans ce cas les deux inégalités précédentes sont strictes.
- 9. (a) Nous avons ${}^tA = {}^t({}^tMM) = {}^tM{}^t({}^tM) = {}^tMM = A$. Donc $A \in \mathscr{S}_n$. Soit $X \in \mathscr{M}_{n,1}(\mathbb{R})$,

$${}^{t}XAX = {}^{t}X{}^{t}MMX = {}^{t}(MX)MX = ||MX||^{2} \ge 0.$$

Donc $A \in \mathscr{S}_n^+$.

Inversement, soit $A \in \mathscr{S}_n^+$. D'après le théorème spectral, il existe une matrice orthogonale P et une matrice diagonale D telles que $A = PD^tP$. Posons $D = \operatorname{diag}(\lambda_1,...,\lambda_n)$. Puisque A est dans \mathscr{S}_n^+ , les λ_i sont positives et on peut poser $\Delta = \operatorname{diag}(\sqrt{\lambda_1},...,\sqrt{\lambda_n})$ de sorte que $\Delta^2 = D$. On peut alors écrire

$$A = PD^{t}P = P\Delta\Delta^{t}P = {}^{t}(D^{t}P)\Delta^{t}P,$$

et la matrice $M = \Delta^t P$ convient.

- (b) D'après la question précédente on sait que $A \in \mathscr{S}_n^+$ si, et seulement si, il existe $M \in \mathscr{M}_n(\mathbb{R})$ tel que $A = {}^t\!M M$. Ainsi $A \in \mathscr{S}_n^{++}$ si, et seulement si, $A \in \mathscr{S}_n^+$ et $\det A \neq 0$ ou encore si, et seulement si, $A = {}^t\!M M$ et $\det M \neq 0$.
- 10. (a) A et B étant symétriques réelles, donc diagonalisables dans des bases orthonormales. Soit $A = PD^tP$ et $A' = QD'^tQ$ avec P et Q sont des matrices orthogonaux, $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ et $D' = \operatorname{diag}(\lambda_1', ..., \lambda_n')$ où les λ_i et λ_i' sont positifs. On a donc

$$\operatorname{tr}(AA') = \operatorname{tr}(PD^{t}PQD'^{t}Q) = \operatorname{tr}(D^{t}PQD'^{t}QP) = \operatorname{tr}(DRD'^{t}R)$$

avec
$$R = {}^t\!PQ$$
. Posons $R = (r_{ij})_{1 \le i,j \le n}$, donc $\operatorname{tr}(AA') = \sum_{i,k} \lambda_i \lambda_i' r_{ik}^2 \ge 0$.

Si $A \in \mathscr{S}_n^{++}$, les λ_i et λ_i' sont strictement positifs, alors comme R est non nulle, il existe i et k tels que $r_{ik} \neq 0$ et dans ce cas $\operatorname{tr}(AA') > 0$.

(b) Dans ces conditions on a $Q_A(X) \leq Q'_A(X)$ et ceci pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Si $\det(A') = 0$, alors il existe X non nul tel que $Q'_A(X) = 0$ et donc $Q_A(X) = 0$, ce qui implique $\det(A) = 0$. Supposons maintenant $\det(A) > 0$, donc Q_A est définie positive, donc c'est un produit scalaire. Donc d'après le théorème spectral, il existe une base orthonormale pour $Q_{A'}$ tel que

$${}^{t}PAP = \operatorname{diag}(\lambda_{1},...,\lambda_{n})$$
 et ${}^{t}PA'P = \operatorname{diag}(\lambda'_{1},...,\lambda'_{n})$

et comme $Q_A(X) \leq Q'_A(X)$, on en déduit que pour tout $i, \lambda_i \leq \lambda'_i$, on a donc

$$\det({}^t PAP) = (\det P)^2 \det A = \prod_{i=1}^n \lambda_i \le \prod_{i=1}^n \lambda_i' = (\det P)^2 \det A'$$

Mais $\det P \neq 0$, donc on bien $\det A \leq \det A'$.

(c) Soient A et B deux matrices symétriques réelles positives.

$$\det(A+B) > 0 = \det A + \det B.$$

<u>DEUXIÈME CAS</u>: Sinon, une des deux matrices A ou B est inversible. Supposons par exemple A est non inversible et par conséquent elle est définie positive. D'après la question 9.(b), il existe une matrice inversible M telle que $A = {}^t\!MM$. On peut alors écrire $A + B = {}^t\!MM + B = {}^t\!M(I_n + {}^t(M^{-1}BM^{-1})M)$ et donc

$$\det(A+B) = (\det M)^2 \det(I_n + {}^tM^{-1}BM^{-1}) = (\det M)^2 \det(I_n + C)$$

où $C = {}^t M^{-1}BM^{-1}$. La matrice C est symétrique, positive car pour tout vecteur $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$${}^{t}XCX = {}^{t}X{}^{t}(M^{-1})BM^{-1}X = {}^{t}(M^{-1}X)B(M^{-1}X) \ge 0$$

et ses valeurs propres $\lambda_1,...,\lambda_n$ sont des réels positifs. Les valeurs propres de la matrice I_n+C sont les réels $1 + \lambda_i$, $1 \le i \le n$ et donc

$$\det(I_n + C) = (1 + \lambda_1)...(1 + \lambda_n) > 1 + \lambda_1...\lambda_n = 1 + \det C.$$

Maintenant, $\det A = (\det M)^2$ puis $\det B = (\det M)^2 \det C$ et donc

$$\det A + \det B = (\det M)^2 (1 + \det C) \le (\det M)^2 \det(I_n + C) = \det(A + B).$$

11. Il est clair que la matrice C est symétrique. Considérons la forme quadratique associée à $C: \forall X \in \mathbb{R}^n, \ Q_C(X) =$ ${}^t X Q X$.

Posons
$$D(X) = \begin{pmatrix} x_1 \\ \ddots \\ x_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}) \text{ et } d(M) = \begin{pmatrix} x_{11} \\ \vdots \\ x_{nn} \end{pmatrix} \in \mathbb{R}^n \text{ si } M = (x_{ij})_{1 \leq i,j \leq n}.$$

On a $CX = \begin{pmatrix} \sum\limits_{j=1}^n a_{1j}u_{1j}x_j \\ \sum\limits_{j=1}^n a_{2j}u_{2j}x_j \\ \vdots \\ \sum\limits_{j=1}^n a_{nj}u_{nj}x_j \end{pmatrix}$, donc $Q_X(X) = {}^t XCX = \sum\limits_{i=1}^n \sum\limits_{j=1}^n a_{ij}b_{ij}x_ix_j$. D'autre part, on vérifie que

$${}^t X d(AD(X)U) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij} x_i x_j$$
. D'où $Q_C(X) = {}^t X d(AD(X)U)$. On aussi

$$\operatorname{tr}(D(X)AD(X)U) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}x_{i}x_{j},$$

d'où

$$Q_C(X) = \operatorname{tr}(D(X)AD(X)U)$$

et comme D(X)AD(X) et U sont dans \mathscr{S}_n^+ , alors $Q_C(X) \geq 0$ (la question 10.(a)), donc $C \in \mathscr{S}_n^+$. De plus si A et U sont dans \mathscr{S}_n^{++} , alors $\forall X \neq 0, \ \ D(X)AD(X) \in S_n^{++}$ et $Q_C(X) > 0$ pour tout X non nul, donc $C \in \mathscr{S}_n^{++}$.

12. Soit $S \in \mathscr{S}_n^+(\mathbb{R})$.

EXISTENCE: D'après le théorème spectral, il existe P orthogonale et D diagonale telles que $S = PD^tP$.

Posons $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ où les λ_i , $1 \le i \le n$, sont des réels positifs puis $\Delta = \operatorname{diag}(\sqrt[k]{\lambda_1}, ..., \sqrt[k]{\lambda_n})$ et enfin

 $R = P\Delta^t P$. Il est evident que la matrice R est un élément de \mathscr{S}_n^+ . Puis $R^k = P\Delta^k P = PD^t P = S$. UNICITÉ: Soit M un élément de $\mathscr{S}_n^+(\mathbb{R})$ telle que $M^k = S$. M est diagonalisable d'après le théorème spectral et donc $\mathcal{M}_{n,1}(\mathbb{R}) = \bigoplus_{\lambda \in \operatorname{Sp}(M)} E_M(\lambda)$. Mais si λ est une valeur propre de M, $\ker(M - \lambda I_n) \subset \ker(M^k - \lambda^k I_n) = \lim_{\lambda \in \operatorname{Sp}(M)} E_M(\lambda)$.

 $\ker(S - \lambda^k I_n)$. De plus, les valeurs propres de M étant positive, les λ^k , $\lambda \in \operatorname{Sp}(M)$, sont deux à deux distincts ou encore les $\ker(S - \lambda^k I_n)$, $\lambda \in \operatorname{Sp}(M)$, sont deux à deux distincts.

Ceci montre que pour chaque $\lambda \in \operatorname{Sp}(M)$, $\ker(M - \lambda I_n) = \ker(S - \lambda^k I_n)$ et que les λ^k , $\lambda \in \operatorname{Sp}(M)$, sont toutes les valeurs propres de S. Ainsi, nécessairement la matrice ${}^t\!PMP$ est une matrice diagonale D'. L'égalité $M^k=S$ fournit $D'^{k} = \hat{D}$ puis $D' = \Delta$ et finalement M = R.

13. Soit $A \in \mathscr{S}_n^+$ telle que $A \leq I_n$ et soit P une matrice orthogonale et $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ une matrices diagonale telles que $A = PD^tP$. On a $M_0 = PO_n^tP$, supposons que $M_k = PD_k^tP$, D_k étant une matrice diagonale, on alors:

$$M_{k+1} = \frac{1}{2} (I_n - A + M_k^2)$$

$$= \frac{1}{2} (I_n - PD^t P + PD_k^{2t} P)$$

$$= \frac{1}{2} P (I_n - D + D_k^2)^t P$$

On en déduit que $M_{k+1} = PD_{k+1}{}^tP$ avec $D_{k+1} = \frac{1}{2}\left(I_n - D + D_k^2\right)$ et que pour tout i, $a_{i,k+1} = \frac{1}{2}\left(1 - \lambda_i + a_{i,k}^2\right)$ où les $a_{i,k}$ sont les éléments diagonaux de D_k . On a, pour tout $i \in [\![1,n]\!]$:

$$a_{i,k+2} - a_{i,k+1} = \frac{1}{2} \left(1 - \lambda_i + a_{i,k+1}^2 \right) - \frac{1}{2} \left(1 - \lambda_i + a_{i,k}^2 \right)$$
$$= \frac{1}{2} \left(a_{i,k+1} - a_{i,k} \right) \left(a_{i,k+1} + a_{i,k} \right)$$

Les réels $a_{i,k}$ sont positifs (car $M_k \in \mathscr{S}_n^+$), donc $a_{i,k+2} - a_{i,k+1}$ est de même signe que $a_{i,k+1} - a_{i,k}$. Or $a_{i,1} - a_{i,0} = \frac{1-\lambda_i}{2} \geq 0$ car $A \leq I_n$, donc la suite $(a_{i,k})_{k \in \mathbb{N}}$ est croissante et comme elle est majorée, donc elle converge vers un nombre réel $a_i \in \mathbb{R}^+$ qui vérifie la relation $a_i = \frac{1}{2} \left(1 - \lambda_i + a_i^2\right)$, c'est-à-dire $a_i = 1 - \sqrt{\lambda_i}$. Posons $D = \operatorname{diag}(1 - \sqrt{\lambda_1}, 1 - \sqrt{\lambda_2}, ..., 1 - \sqrt{\lambda_n})$. La suite de matrices $(M_k)_{k \in \mathbb{N}}$ est donc convergente vers

 $L=PD^tP.$ La relation $M_{k+1}=\frac{1}{2}\left(I-A+M_k^2\right)$ montre, par passage à la limite, que $2L=I-A+L^2$ ou encore $(L-I)^2=A$, d'autre on peut vérifier par récurrence que $\forall k\in\mathbb{N},\ M_k\leq I_n$ et donc $L\leq I_n$.

- 14. (a) Soient A et B deux matrices symétriques réelles positives. D'après la question 9.(a), il existe deux matrices carrées M et N telles que $A = {}^t MM$ et $B = {}^t NN$. On a alors $AB = {}^t MM^tNN$. La matrice AB a même polynôme caractéristique que la matrice $N({}^t MM^tN) = {}^t (M^tN)M^tN$. Or cette dernière matrice est symétrique positive et a donc des valeurs propres réelles positives. On a montré que les valeurs propres de la matrice AB sont réelles et positives.
 - (b) Il existe une matrice inversible M tel que $A = {}^t\!MM$ et une matrice P inversible tel que $B = {}^t\!PDP$ (réduction des formes quadratiques). On a donc

$$AB = {}^{t}MM^{t}PDP = {}^{t}M(M^{t}PDP^{t}M)({}^{t}M)^{-1} = {}^{t}M^{t}(P^{t}M)D(P^{t}M)({}^{t}M)^{-1}$$

La matrice ${}^t\!(P^t\!M)D(P^t\!M)$ est symétrique réelle, donc diagonalisable, donc AB, qui est semblable à une matrice diagonalisable, est diagonalisable.

• • • • • • • • •