

## MP – CPGE Mohammed VI-Kénitra

Année scolaire 24/25

# Devoir libre $n^{\circ}1$

à rendre le 18/09/2025

#### Exercice 1

Soit P un polynôme de  $\mathbb{C}[X]$ . Alors les racines du polynôme dérivé P' sont situées dans l'enveloppe convexe des racines de P. Cela signifie que les racines de P' sont à l'intérieur du polygone délimité par les racines de P. On peut encore traduire cette propriété mathématiquement en disant que les racines de P' peuvent s'écrire comme barycentres des racines de P: si  $\alpha_1, ..., \alpha_n$ 

sont les racines de P, alors toute racine  $\mu$  de P' peut s'écrire  $\mu = \sum_{i=1}^n \lambda_i \alpha_i$  où pour tout i,

$$\lambda_i \in [0,1]$$
 et  $\sum_{i=1}^n \lambda_i = 1$ .

- 1. Vérifier le théorème sur les polynômes suivants :  $X^4 + 3X^2 4$ ,  $X^3 X^2 + X 1$ ,  $aX^2 + bX + c$  (avec a, b, c dans  $\mathbb{C}$ ),  $X^k 1$  (avec  $k \geq 2$ ). Soit  $P \in \mathbb{C}[X]$  un polynôme de degré au moins 2. On considère sa décomposition  $P = a\prod_{k=1}^k (X \alpha_i)^{n_i}$  où  $a \in \mathbb{C}$  et les  $\alpha_i$  sont les racines de P et les  $n_i$  leurs multiplicités.
- **2.** Soit  $z \in \mathbb{C}$  tel que  $P(z) \neq 0$ . Montrer que

$$\frac{P'(z)}{P(z)} = \sum_{i=1}^{k} \frac{n_i}{z - \alpha_i}.$$

3. Montrer que si z est de plus une racine de P', alors

$$\left(\sum_{i=1}^k \frac{n_i}{|z - \alpha_i|^2}\right) z = \sum_{i=1}^k \frac{n_i}{|z - \alpha_i|^2} \alpha_i$$

4. En déduire que z est un barycentre des  $\alpha_i$ . Conclure.

## Exercice 2

Soit p un nombre premier impair. Notons C l'ensemble des carrés du groupe  $\left(\left(\mathbb{Z}/_{p\mathbb{Z}}\right)^*,\times\right)$  :

$$C = \left\{ y \in (\mathbb{Z}/_{p\mathbb{Z}})^* \mid \exists x \in (\mathbb{Z}/_{p\mathbb{Z}})^* y = x^2 \right\}.$$

- **1.** Déterminer C pour p = 3, 5, 7, 11.
- **2.** Montrer que C est un sous-groupe de  $(\mathbb{Z}/_{p\mathbb{Z}})^*$ .
- 3. Soit  $f: (\mathbb{Z}/_{p\mathbb{Z}})^* \to C$   $\xrightarrow{x} \text{Montrer que } f \text{ est un morphisme de groupes.}$
- **4.** Montrer que f(x) = f(y) si et seulement si y = x ou y = -x.
- 5. En déduire qu'il y a exactement  $\frac{p-1}{2}$  carrés dans  $(\mathbb{Z}/_{p\mathbb{Z}})^*$ .

#### Exercice 3

- 1. Soit  $P = \sum_{k=0}^{n} a_k X^k$  un polynôme de degré n à coefficients dans  $\mathbb{Z}$ . Montrer que si P admet une racine rationnelle  $\frac{p}{q}$  où p et q sont des entiers premiers entre eux, alors  $p/a_0$  et  $q/a_n$ .
- **2.** Les polynômes suivants ont-ils des racines dans  $\mathbb{Q}$ ?

$$X^5 - X^2 + 1$$
,  $2X^4 - X^3 + X^2 - X + 2$ ,  $X^3 - 6X^2 - 4X - 21$ .

# Exercice 4

Soit p un nombre premier. Montrer que le groupe des éléments inversibles de l'anneau  $(\mathbb{Z}/_{p\mathbb{Z}},+,.)$  est un groupe cyclique.

Fin de l'épreuve