Devoir libre $n^{\circ}7$

à rendre le 06/02/2012

• • • • • • • • •

Dans tout le problème I désigne l'intervalle $]0, +\infty[$.

- 1. Soient $x \in I$, $y \in I$, $x \neq y$. Montrer que : $\frac{y-x}{y} \leq \ln \frac{y}{x} \leq \frac{y-x}{x}$.
- 2. Soit $(a_n)_{n\in\mathbb{N}}$ et $(\varepsilon_n)_{n\in\mathbb{N}}$ deux suites de nombres réels telles que, pour tout n, on ait :

$$0 \le a_{n+1} - a_n \le \varepsilon_n - \varepsilon_{n+1}.$$

On suppose que les ε_n sont positifs et que la suite $(\varepsilon_n)_{n\in\mathbb{N}}$ tend vers 0 lorsque n tend vers $+\infty$. Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est convergente.

3. Montrer que les résultats de la question précédente s'appliquent dans les cas :

(a)
$$a_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $\varepsilon_n = \frac{1}{n}$.

(b)
$$a_n = \ln n - \sum_{k=1}^n \frac{1}{k}$$
 et $\varepsilon_n = \frac{1}{n}$.

4. Pour tout $x \in I$ et pour tout $n \ge 1$, on pose :

$$f_n(x) = \ln \frac{n^x n!}{x(x+1)...(x+n)}.$$

En exprimant $f_n(x)$ sous forme de somme, étudier les propriétés de la fonction f_n définie sur I: continuité, dérivabilité, convexité, limites aux bornes du domaine de définition, directions asymtotiques et asymptotes éventuelles, croissance. (on ne cherchera pas à déterminer les coordonnées des extréma et on distinguera les cas n=1 et n>1).

5. Pour tout $x \in I$ et pour tout $n \ge 1$, on pose $\varepsilon_n = \frac{x(x+1)}{x}$. Montrer, en utilisant la première question, que pour tout $x \in I$ et pour tout $n \ge 1$, on a :

$$0 \le f_{n+1}(x) - f_n(x) \le \varepsilon_n - \varepsilon_{n+1}$$
.

6. Déduire des questions précédentes que pour tout $x \in I$ fixé, la suite des nombres réels $(f_n(x))_{n_i n \mathbb{N}}$ admet une limite. On désignera cette limite par f(x).

On se propose d'étudier les propriétés de la fonction f définie sur I, qui à x associe f(x).

7. Pour tout $x \in I$ et pour tout $n \ge 1$, on pose :

$$g_n(x) = f_n(x+1) - f_n(x).$$

Montrer que pour tout x dans I fixé, la suite $(g_n(x))_{n\in\mathbb{N}}$ converge vers $\ln x$. En déduire la valeur de

$$f(x+1) - f(x).$$

- 8. Montrer que f(1) = 0. En déduire la valeur de f(n) pour tout n entier naturel supérieur à 1.
- 9. Montrer que *f* vérifie les propriétés suivantes :
 - (a) *f* est convexe.
 - (b) $\lim_{x \to 0} f(x) = +\infty$.
 - (c) $\lim_{x \to +\infty} f(x) = +\infty$.
 - (d) $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty.$
 - (e) $f(x) \le 0$ si, et seulement si, $x \in [1, 2]$.

10. Soit Γ la fonction définie par $\Gamma(x) = e^{f(x)}$. Montrer que la fonction Γ vérifie les propriétés suivantes :

- (a) Pour tout $x \in I$, $\Gamma(x+1) = x\Gamma(x)$.
- (b) $\Gamma(1) = 1$.
- (c) Γ est convexe.

En déduire la valeur de $\Gamma(n)$ pour tout $n \geq 1$.

FIN DE L'ÉPREUVE