MP – CPGE KHOURIBGA 16-01-2016

Devoir surveillé $n^{\circ}4$

Durée: 4 heures

Les candidats sont informés que la précision des raisonnements ainsi que le soin apporté à la rédaction seront des éléments pris en compte dans la notation. Les candidats pourront admettre et utiliser le résultat d'une question non résolue s'ils l'indiquent clairement sur la copie.

Exercice

Soit E l'espace vectoriel des matrices de $\mathcal{M}_n(\mathbb{R})$ symétriques. Pour A et B dans E on dit que $A \leq B$ si et seulement si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^t\!XAX \leq {}^t\!XBX$.

- **1.** Montrer que \leq est une relation d'ordre sur E.
- **2.** Soit $(A_k)_{k\in\mathbb{N}}$ une suite croissante majorée d'éléments de E. Montrer que cette suite converge dans E.
- **3. 3***a*. On définit une suite de fonctions $p_n : [0,1] \to \mathbb{R}$ par $p_0 = 0$ et, pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$,

$$p_{n+1}(x) = p_n(x) + \frac{1}{2} (x - (p_n(x))^2).$$

- i. Montrer que la suite $(p_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1] vers la fonction $x\mapsto \sqrt{x}$.
- ii. Démontrer que, pour tout entier $n \ge 1$,

$$0 \leqslant \sqrt{x} - p_n(x) \leqslant \sqrt{x} \left(1 - \frac{1}{2}\sqrt{x}\right)^n$$
.

En déduire que la convergence est uniforme sur [0, 1].

3b. Soit $A \in E$. Notons, pour $k \in \mathbb{N}$, $B_k = p_k(A)$. Montrer que si les valeurs propres de A sont dans [0, 1] alors la suite $(B_k)_{k \in \mathbb{N}}$ converge vers un élément de E à préciser.

Problème

Dans tout le problème les matrices seront des matrices carrées 3×3 , ou des matrices colonnes 3×1 , à coefficients dans \mathbb{C} .

On pourra identifier matrice carrée avec application linéaire dans une base canonique, et matrice colonne avec vecteur.

Rappels et définitions

Soit A une matrice de dimension quelconque, de terme général a_{i,j}. On pose ||A|| = sup |a_{i,j}|.
On admet que l'application A → ||A|| est une norme sur l'espace des matrices ayant même dimension que A.

• À toute suite $(A_k)_{k \in \mathbb{N}}$ de matrices, on associe la suite dite « des sommes partielles » $U_k = \sum_{i=0}^k A_i$.

Si cette nouvelle suite converge, on note $\lim_{k\to +\infty} U_k = \sum_{i=0}^{\infty} A_i$ que l'on appelle somme de la série de terme général A_k .

• Pour toute matrice A, on note $\exp(A)$ la somme de la série *convergente* de terme général $\frac{A^k}{k!}$. Soit

$$\exp(A) = \sum_{i=0}^{\infty} \frac{A^i}{i!}.$$

Le but de ce problème est, pour quelques matrices A, de calculer, lorsque c'est possible, $\sum_{i=0}^{\infty} A^i$ et

$$\exp\left(A\right) = \sum_{i=0}^{\infty} \frac{A^{i}}{i!}.$$

Partie I

Dans cette partie les matrices sont, sauf indication du contraire, dans $\mathcal{M}_3(\mathbb{C})$.

- **1. 1a.** Montrer que $||AB|| \le 3||A|| ||B||$. En déduire que $||A^k|| \le 3^{k-1} ||A||^k$ pour $k \in \mathbb{N}^*$.
 - **1b.** Montrer que, si A est inversible, on a pour tout $k \in \mathbb{N}^*$, $||A^k||^{\frac{1}{k}} \ge \frac{1}{3||A^{-1}||}$. En déduire que si $\lim_{k \to \infty} ||A^k||^{\frac{1}{k}} = 0$ alors A n'est pas inversible.
- **2. 2a.** Simplifier l'expression $(I A) \left(\sum_{i=0}^{k} A^i \right)$ où I désigne la matrice unité de $\mathcal{M}_3(\mathbb{C})$.
 - **2**b. Montrer que si $\lim_{k\to +\infty}A^k=0$, alors pour toute matrice colonne 3×1 notée X, on a $\lim_{k\to +\infty}A^kX=0$.

En déduire que A - I est inversible et exprimer son inverse comme somme d'une série.

En déduire l'existence de $\sum_{i=0}^{\infty} A^i$.

- 3. Soit *A* telle que $\lim_{k\to\infty} A^k = B$.
 - ${\bf 3a.}\,$ Si B est inversible, montrer que A est égale à I.
 - 3b. Montrer que les valeurs propres de A valent 1 ou ont un module strictement inférieur à 1.
 - **3c.** On suppose que A est diagonalisable et que $A \neq I$.

Montrer que si $1 \notin \operatorname{Sp}(A)$ alors B est nulle, et que si $1 \in \operatorname{Sp}(A)$ alors B est diagonalisable avec $\operatorname{Sp}(B) \subset \{0,1\}$.

4. Soit *A* quelconque. Montrer que si $A = PBP^{-1}$ alors $\exp(A) = P \exp(B)P^{-1}$.

Partie II

Dans cette partie nous nous intéressons plus particulièrement aux matrices triangulaires supérieures ou diagonales.

On pose
$$D=\begin{pmatrix}a&0&0\\0&b&0\\0&0&c\end{pmatrix}$$
, $M=\begin{pmatrix}a&0&0\\0&b&1\\0&0&b\end{pmatrix}$ et $Q=\begin{pmatrix}a&1&0\\0&a&1\\0&0&a\end{pmatrix}$ avec a,b et c des complexes qui ne sont pas forcément différents.

- **1.** Déterminer la forme générale de D^k , M^k et Q^k avec $k \in \mathbb{N}^*$.
- **2. 2a.** Déterminer les a, les b et les c pour que D^k , M^k et Q^k convergent. Calculer dans ce cas $\lim_{k\to\infty}D^k$, $\lim_{k\to\infty}M^k$ et $\lim_{k\to\infty}Q^k$.
 - **2**b. Si on suppose que $\lim_{k\to\infty} D^k = 0$, calculer $\sum_{i=0}^{\infty} D^i$.
 - **2c.** Si on suppose que $\lim_{k\to\infty} M^k = 0$, calculer $\sum_{i=0}^{\infty} M^i$.
 - **2d.** Si on suppose que $\lim_{k\to\infty} Q^k = 0$, calculer $\sum_{i=0}^{\infty} Q^i$.
- **3.** Déterminer la valeur de $\exp(D)$, $\exp(M)$ et $\exp(Q)$.

Partie III

Dans cette partie nous nous intéressons plus particulièrement aux matrices nilpotentes. Dans toute cette partie, sauf indication du contraire, on considère N une matrice carrée 3×3 nilpotente non nulle à coefficients dans \mathbb{C} .

- 1. 1a. Montrer que les quatre affirmations suivantes sont équivalentes :
 - i) *N* est nilpotente,
 - ii) $Sp(N) = \{0\},\$
 - iii) N est semblable à une matrice triangulaire supérieure de diagonale nulle,
 - iv) $N^3 = 0$.

Application : En déduire que l'équation $A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, d'inconnue A une matrice carrée

 3×3 n'admet pas de solution.

1*b***.** Montrer que det (I - N) = 1.

En déduire que I - N est inversible. Que vaut l'inverse de I - N?

Quelles sont les valeurs propres de I-N? En déduire que I-N n'est pas diagonalisable.

1c. Montrer que si $N^2 \neq 0$ et N nilpotente alors il existe $X \in \mathbb{C}^3$ telle que (X, NX, N^2X) est une base de \mathbb{C}^3 . En déduire que :

A commute avec $N \Leftrightarrow A$ combinaison linéaire de I, N, et N^2 .

En déduire que si A commute avec N alors $\det (A - N) = \det (A)$.

A-t-on encore $\det(A - N) = \det(A)$ si A ne commute pas avec N?

- **2.** Soient N_1 et N_2 deux matrices nilpotentes telles que $N_1N_2 = N_2N_1$.
 - **2a.** Montrer que N_1N_2 et que $N_1 + N_2$ sont nilpotentes.
 - **2***b*. En développant $(N_1 + N_2)^3$ et $(N_1 + N_2)^4$, montrer que $N_1 N_2^2 + N_1^2 N_2 = 0$ et que $N_1^2 N_2^2 = 0$.
 - **2c.** Montrer que exp $(N_1 + N_2) = \exp(N_1) \exp(N_2)$.
 - **2***d.* En déduire que si N est nilpotente alors $\exp(N)$ est inversible ; vous donnerez l'inverse de $\exp(N)$.
- 3. Application: Dans cette question (et dans cette question seulement) on considère

$$N = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{array}\right)$$

- 3a. Montrer que N est nilpotente.
- **3b.** Calculer $\sum_{i=0}^{\infty} N^i$. En déduire l'inverse de I-N.
- **3c.** Calculer $\exp(N)$ et $\exp(-N)$.

Partie IV

Dans cette partie nous calculerons l'exponentielle d'une matrice dans deux cas particuliers.

- **1.** On considère $R = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$ et $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$.
 - **1a.** Déterminer les valeurs propres de *R*.
 - **1***b.* Déterminer les espaces propres de R. R est-elle diagonalisable ? En déduire la valeur de $\exp(R)$.
- **2.** On considère $M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & -1 \end{pmatrix}$ et $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.
 - **2a.** Déterminer les valeurs propres de *M*.
 - **2**b. Déterminer les espaces propres de *M*. *M* est-elle diagonalisable ?

Déterminer U et V, deux matrices colonnes 3×1 propres de M, avec U associée à la valeur propre 1 et V associée à la valeur propre -1.

2c. Déterminer W matrice colonne 3×1 telle que (M + I)W = V.

En déduire que M et T sont deux matrices semblables.

Déterminer une matrice 3×3 notée P inversible telle que $M = PTP^{-1}$.

Calculer $\exp(M)$.

Fin de l'énoncé