Année scolaire : 2012/2013 Filière **MP**

DEVOIR SURVEILLÉ COMMUN N°6

16/03/2013

durée: 4 heures

• • • • • • •

Les candidats sont informés que la précision des raisonnements ainsi que le soin apporté à la rédaction seront des éléments pris en compte dans la notation. Les candidats pourront admettre et utiliser le résultat d'une question non résolue s'ils l'indiquent clairement sur la copie.

EXERCICE: SÉRIES DE FOURIER

- 1. On considère la fonction g de la variable réelle définie par : $g(u) = \int_0^1 \frac{t}{\sqrt{1-t^2}} \sin(tu) dt$.
 - (a) Montrer que la fonction g est définie sur \mathbb{R} .
 - (b) Déterminer, pour tout u>1, un réel α_u dans]0,1[tel que $\int_{\alpha_u}^1 \frac{t}{\sqrt{1-t^2}} dt = \frac{1}{\sqrt{u}}.$
 - (c) Dériver $t\mapsto \frac{t}{\sqrt{1-t^2}}$ et intégrer par parties $\int_0^{\alpha_u} \frac{t}{\sqrt{1-t^2}} \sin(tu) dt$ pour en déduire que : $\forall u>1, \ |g(u)|\leq \frac{3}{\sqrt{u}}.$
- 2. Soit f la fonction 2π -périodique sur $\mathbb R$ dont la restriction à $]-\pi,\pi[$ est représentée dans un repère orthonormal $(O,\overrightarrow{i},\overrightarrow{j})$ par le demi-cercle de centre O, de rayon π et d'ordonnées positives.
 - (a) Pour tout $x \in]-\pi,\pi[$, donner l'expression de f(x) en fonction de x.
 - (b) Le théorème de Dirichlet s'applique-t-il à la fonction f ?
- 3. (a) Exprimer, pour $n \in \mathbb{N}$, les coefficients de Fourier trigonométriques de f notés a_n et b_n .
 - (b) Montrer que : $\forall n \in \mathbb{N}^*$, $a_n = \frac{2}{n}g(\pi n)$.
- 4. (a) Établir la convergence normale de la série de Fourier de *f*. Cela contredit-il la question 2.(b) ?
 - (b) Montrer à l'aide du théorème de Parseval que la série de Fourier de f converge vers f.

Problème : Séries entières et topologie de $l^1(\mathbb{R})$

 $l^1(\mathbb{R})$ désigne, dans tout le problème, le \mathbb{R} espace vectoriel des suites réelles $a=(a_n)_{n\in\mathbb{N}}$ telles que la série $\sum a_n$ soit absolument convergente.

E est le \mathbb{R} -espace vectoriel des fonctions $f: [-1,1] \to \mathbb{R}$, continues, et pour $f \in E$, $\|f\|_{\infty}$ est le réel défini par : $\|f\|_{\infty} = \sup_{x \in [-1,1]} |f(x)|$.

I. QUESTIONS PRÉLIMINAIRES

1. Montrer que l'application

$$\|.\|: l^1(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$a \longmapsto \|a\| = \sum_{n=0}^{\infty} |a_n|$$

où $a=(a_n)_{n\in\mathbb{N}}$, est une norme sur $l^1(\mathbb{R})$ et que muni de cette norme $l^1(\mathbb{R})$ est complet.

2. Soit $a=(a_n)_{n\in\mathbb{N}}$ un élément de $l^1(\mathbb{R})$. Montrer que pour tout $x\in[-1,1]$, la série $\sum_{n\in\mathbb{N}}a_nx^n$ converge et que l'application $f_a: x\mapsto\sum_{n=0}^\infty a_nx^n$ est un élément de E.

II. Formes linéaires continues sur $(l^1(\mathbb{R}),\|.\|)$

- 1. Soit $u=(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels, bornée. Montrer que l'application φ de $l^1(\mathbb{R})$ dans \mathbb{R} (à justifier) définie pour tout $a=(a_n)_{n\in\mathbb{N}}$ par $\varphi(a)=\sum_{n=0}^\infty a_nu_n$ est une forme linéaire continue sur $(l^1(\mathbb{R}),\|.\|)$. Déterminer la norme de φ .
- 2. Réciproquement, soit φ une forme linéaire continue sur $(l^1(\mathbb{R}), \|.\|)$. Montrer qu'il existe, et de manière unique, une suite réelle $u = (u_n)_{n \in \mathbb{N}}$, bornée, telle que :

$$\forall a = (a_n)_{n \in \mathbb{N}} \in l^1(\mathbb{R}), \ \varphi(a) = \sum_{n=0}^{\infty} a_n u_n.$$

III. SUITES DE $(l^1(\mathbb{R}), \|.\|)$. Convergences

- 1. Soit $(a^k)_{k\in\mathbb{N}^*}$ une suite de points de $l^1(\mathbb{R})$. Pour tout $k\in\mathbb{N}$, on note $a^k=(a^k(n))_{n\in\mathbb{N}}$ et on suppose que la suite $(a^k)_{k\in\mathbb{N}^*}$ converge dans $(l^1(\mathbb{R}),\|.\|)$. On désigne par f_k l'élément noté en I.2. f_{a^k} . Montrer que la suite des fonctions $(f_k)_{k\in\mathbb{N}^*}$ converge uniformément sur [-1,1].
- 2. Soit $(a^k)_{k\in N^*}$ la suite de points de $l^1(\mathbb{R})$ définie, pour tout entier $k\in\mathbb{N}^*$ par : $a^k=(a^k(n))_{n\in\mathbb{N}}$ où

$$\begin{cases} a^{k}(0) = 0 \\ a^{k}(n) = \frac{\sin n}{n} \text{ si } n \leq k \\ a^{k}(n) = 0 \text{ si } n \geq k+1 \end{cases}$$

 f_k représentant toujours l'élément de E associé comme en I.2. à la suite a^k . Montrer que la suite $(f_k)_{k\in\mathbb{N}^*}$ converge dans $(E,\|.\|_{\infty})$.

La suite $k\mapsto a^k$ converge-t-elle dans $(l^1(\mathbb{R}),\|.\|)$?

3. Soit $k\mapsto a^k$, $k\ge 1$, une suite d'éléments de $l^1(\mathbb{R})$ avec pour tout $k:a^k=(a^k(n))_{n\in\mathbb{N}}$. On suppose que :

$$(\exists M > 0), \ (\forall k \ge 1), \ (\forall n \in \mathbb{N}), \ \left(\left| a^k(n) \right| \le M \right)$$

et qu'en outre la suite $(f_k)_{k\geq 1}$ de E définie par : $f_k(x)=\sum_{n=0}^\infty a^k(n)x^n$ converge vers 0 dans $(E,\|.\|_\infty)$.

Montrer qu'alors : $\forall n \in \mathbb{N}, \lim_{k \to \infty} a^k(n) = 0.$

4. Soit $(a^k)_{k\in N^*}$ une suite de points de $l^1(\mathbb{R})$ avec $a^k=(a^k(n))_{n\in\mathbb{N}}$ et f_k l'élément de E défini par :

$$\forall x \in [-1, 1], \ f_k(x) = \sum_{n=0}^{\infty} a^k(n) x^n.$$

On suppose :

- (i) La suite $(f_k)_{k\in\mathbb{N}^*}$ converge uniformément sur [-1,1].
- (ii) Il existe $\alpha = (\alpha_n)_{n \in \mathbb{N}}$, $\alpha \in l^1(\mathbb{R})$, avec $|a^k(n)| \leq \alpha_n$ pour tous n et k de \mathbb{N} .

Montrer qu'alors la suite $(a^k)_{k \in \mathbb{N}^*}$ converge dans $(l^1(\mathbb{R}), \|.\|)$.

IV. Application linéaire \mathscr{C}^0 de $l^1(\mathbb{R})$ dans $l^1(\mathbb{R})$

1. Soit a un élément de $l^1(\mathbb{R})$. Montrer que pour tout x de $l^1(\mathbb{R})$ la suite a*x appartient à $l^1(\mathbb{R})$. (a*x est la suite dont le terme général d'ordre n est égal à $\sum_{k=0}^n a_k x_{n-k} = \sum_{p+q=n} a_p x_q$)

2. En déduire que l'application $\psi_a: l^1(\mathbb{R}) \to l^1(\mathbb{R})$ définie par $: x \mapsto a * x$ est linéaire et continue. Comparer sa norme à celle de a.

V. Exemples d'éléments de $l^1(\mathbb{R})$

- 1. Soit $a=(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs telle que :
 - (i) $\forall x \in]-1,1[$, la série $\sum_{n \in \mathbb{N}} a_n x^n$ converge.
 - (ii) $\lim_{x\to 1, x<1} \sum_{n=0}^{\infty} a_n x^n$ existe.

Montrer alors que $a \in l^1(\mathbb{R})$ et à l'aide d'un exemple vérifier que l'hypothèse $a_n \geq 0$ pour tout $n \in \mathbb{N}$ est une hypothèse essentielle.

2. Soit $a=(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes telle que la série entière $\sum_{n\in\mathbb{N}}a_nz^n$, $z\in\mathbb{C}$, ait un rayon de convergence égal à 1, on suppose qu'il existe M>0 tel que :

$$(\forall z \in \mathbb{C}, |z| < 1) \Rightarrow \left(\left| \sum_{n=0}^{\infty} a_n z^n \right| \le M \right).$$

Démontrer que la suite $(|a_n|^2)_{n\in\mathbb{N}}$ est dans $l^1(\mathbb{R})$.

- 3. Soit $a=(a_n)_{n\in\mathbb{N}}$ la suite définie par : $a_n=\int_0^{\frac{\pi}{2}}\sin^n(x)dx$. La suite a est-elle dans $l^1(\mathbb{R})$?
- 4. Pour $n \in \mathbb{N}$ on pose $a_n = \frac{1}{(2n)!} \int_{-\infty}^{+\infty} e^{-e^{|x|}} x^{2n} dx$. Vérifier que la suite $a = (a_n)_{n \in \mathbb{N}}$ est dans $l^1(\mathbb{R})$ et montrer que $||a|| = 2 \int_0^{+\infty} e^{-e^x} \operatorname{ch}(x) dx$.
- 5. Soit $a=(a_n)_{n\in\mathbb{N}}$ la suite définie par $a_n=\int_0^1 x^n\sin(\pi x)dx$. Montrer que $a\in l^1(\mathbb{R})$ et exprimer sa norme à l'aide d'une intégrale. Justifier l'inégalité $\|a\|\geq \frac{\pi}{2}$.

FIN DE L'ÉPREUVE