Centre Ibn Abdoune des Classes Préparatoires aux Grandes Écoles Khouribga Année scolaire : 2014/2015 Filière **MP**

Devoir surveillé commun n°4

17/01/2015

durée: 4 heures

• • • • • • •

Les candidats sont informés que la précision des raisonnements ainsi que le soin apporté à la rédaction seront des éléments pris en compte dans la notation. Les candidats pourront admettre et utiliser le résultat d'une question non résolue s'ils l'indiquent clairement sur la copie.

• • • • • • •

EXERCICE 1

On pose, pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$: $f_n(x) = \ln(1 + e^{-nx})$.

- 1. Determiner D le domaine de définition de $f(x) = \sum_{n=0}^{\infty} f_n(x)$.
- 2. Étudier la convergence normale et uniforme de $\sum_{n\in\mathbb{N}} f_n(x)$ sur D.
- 3. Soit a>0. Montrer que $\sum_{n\in\mathbb{N}}f_n(x)$ converge normalement sur $[a,+\infty[$.
- **4.** Calculer $\lim_{+\infty} f(x)$.
- **5.** Prouver que f est continue, puis de classe \mathscr{C}^1 et enfin de classe \mathscr{C}^∞ sur D.
- **6.** En isolant le premier terme et en majorant le reste, donner un équivalent de f(x) au voisinage de $+\infty$.
- 7. À l'aide d'une comparison série-intégrale, déterminer un équivalent simple de f(x) au voisinage de 0^+ .

On pourra faire intervenir (après lui avoir donné un sens) l'intégrale $\int_0^1 \frac{\ln(1+u)}{u} du$ qu'on ne cherchera pas à calculer.

EXERCICE 2

- **1.** On pose $f_n(x) = (-1)^n \left(\frac{x^2 + n}{n^2}\right)$. Montrer que $\sum_{n \ge 1} f_n(x)$ converge simplement sur [0, 1] puis uniformément sur [0, 1] mais pas absolument sur [0, 1].
- **2.** Soit $(\alpha_n)_{n\geq 0}$ une suite décroissante de réels positifs, I=[0,1[et pour $x\in I$,

$$f_n(x) = \alpha_n x^n (1 - x).$$

- a) Justifier que (α_n) est bornée et que $\sum_{n\in\mathbb{N}}f_n(x)$ converge simplement sur I.
- **b)** Montrer que $\sum_{n\in\mathbb{N}} f_n(x)$ converge normalement sur I si et seulement si $\sum_{n\in\mathbb{N}} \frac{\alpha_n}{n}$ converge.
- 3. a) Calculer pour $x \in I$, $f(x) = \sum_{k=n+1}^{\infty} x^k$.
 - **b)** On suppose que $(\alpha_n)_{n\geq 0}$ tend vers 0, montrer que $\sum_{n\in\mathbb{N}} f_n(x)$ converge uniformément sur I.
 - c) Réciproquement, démontrer que si $\sum_{n\in\mathbb{N}} f_n(x)$ converge uniformément sur I alors $(\alpha_n)_{n\geq 0}$ tend vers 0.

Problème

L'objectif de ce problème est l'etude de la fonction ζ (dite fonction zêta de Riemann) définie, pour x strictement supérieur à 1, par la relation :

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

La première partie est consacrée à l'étude globale de cette fonction ζ , la deuxième partie aux calculs de valeurs numériques de $\zeta(x)$ au voisinage de 1 en faisant appel une méthode d'accélération de convergence. Enfin, la troisième partie précise le comportement asymptotique de ζ au voisinage de 1.

Dans tout le problème, N et n désignent des entiers supérieurs ou égaux à 1.

PREMIERE PARTIE

Désignons par f_n , S_N et R_N les trois fonctions définies par les relations :

$$f_n(x) = \frac{1}{n^x}, \ S_N(x) = \sum_{n=1}^N \frac{1}{n^x}, \ R_N(x) = \sum_{n=N+1}^\infty \frac{1}{n^x}.$$

Les deux premières fonctions sont définies sur \mathbb{R} , la fonction R_N est définie lorsque la série de terme général $f_n(x)$ est convergente.

1. Démontrer que la série de terme général $f_n(x)$ est convergente dans l'intervalle $I =]1, +\infty[$.

Prouver que les trois séries de fonctions de termes généraux respectifs f_n , f'_n et f''_n sont uniformément convergentes sur tout intervalle $[a, +\infty[$ contenu dans I. Est-ce qu'il y a convergence uniforme pour ces trois dries de fonctions dans I?

Par définition, ζ est la fonction somme de la série de fonctions de terme général f_n : pour tout del x de I:

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

- **2.** a) Démontrer que la fonction ζ est de classe \mathscr{C}^2 sur l'intervalle I et donner les signes de ζ' et de ζ'' .
 - **b)** Démontrer, pour tout réel x de l'intervalle I et pour tout entier N (de \mathbb{N}^*), l'encadrement :

$$\frac{1}{(x-1)(N+1)^{x-1}} \le R_N(x) \le \frac{1}{(x-1)N^{x-1}}.$$

En déduire un encadrement de $\zeta(x)$ valable pour tout entier N.

- c) Étudier les limites de $\zeta(x)$ lorsque x tend vers 1 dans I et lorsque x croît indéfiniment, donner un équivalent de $\zeta(x)$ lorsque x tend vers 1.
- 3. a) En utilisant notamment l'encadrement précédent, calculer à 10^{-6} près les nombres $\zeta(4),$ $\zeta\left(\frac{7}{2}\right),$ $\zeta(3).$
 - **b)** Tracer la courbe représentative de la fonction ζ .

DEUXIÈME PARTIE

Les résultats obtenus précédemment ne permettent pas un calcul précis et rapide de $\zeta(x)$ pour des valeurs de x voisines de 1. L'objectif de cette partie est de proposer, pour de telles valeurs, une méthode d'accélération de convergence. Étant donné un réel x et un entier n strictement supérieurs à 1, désignons par $(\varphi_n$ la fonction $u\mapsto \varphi_n(u)$ définie sur l'intervalle $\left[0,\frac{1}{2}\right]$ par la relation :

$$\varphi_n(u) = \int_{n-u}^{n+u} \left(\frac{1}{n^x} - \frac{1}{t^x}\right) dt$$

- **1.** a) Démontrer que la fonction φ_n est de classe \mathscr{C}^{∞} sur l'intervalle $\left[0,\frac{1}{2}\right]$, calculer $\varphi_n(0), \varphi_n'(0)$ et $\varphi_n''(0)$.
 - b) Démontrer, pour tout entier n > 1 et pour tout réel x de I, la relation :

$$f_n(x) = \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \frac{\mathrm{d}t}{x} + \varphi_n\left(\frac{1}{2}\right).$$

c) Démontrer l'encadrement :

$$\frac{x(x+1)}{24} \frac{1}{(n+1)^{x+2}} \le -\varphi_n\left(\frac{1}{2}\right) \le \frac{x(x+1)}{24} \frac{1}{(n-1)^{x+2}}.$$

d) Soient x un réel et N un entier strictement supérieurs à 1, en utilisant la question 1).a précédente, démontrer la double inégalité :

$$\frac{x}{24(N+2)^{x+1}} \le \frac{1}{(x-1)\left(N+\frac{1}{2}\right)^{x-1}} - R_N(x) \le \frac{x}{24(N-1)^{x+1}}.$$

2. En utilisant les résultats précédents, calculer à 10^{-6} près les nombres $\zeta(1,1)$, $\zeta(1,01)$ et $\zeta(1,005)$.

TROISIÈME PARTIE

1. On considère la suite $(g_n)_{n\in\mathbb{N}^*}$ des fonctions définies sur $]0,+\infty[$ par la relation :

$$g_n(x) = S_n(x) - \int_1^n \frac{\mathrm{d}t}{t^x}.$$

 S_n est la fonction définie sur $[0, +\infty[$ par :

$$S_n(x) = 1 + \frac{1}{2^x} + \frac{1}{3^x} + \dots + \frac{1}{n^x}.$$

- a) Démontrer que cette suite $(g_n)_{n\in\mathbb{N}^*}$ est convergente sur l'intervalle $]0,+\infty[$. Soit g la fonction limite. Préciser la restriction de la fonction g à l'intervalle $I=]1,+\infty[$.
- **b)** En utilisant un encadrement de la fonction $g_{n+p} g_n$ (où $p \in \mathbb{N}$), démontrer, pour tout x strictement positif et pour tout entier n de \mathbb{N}^* , la relation :

$$-\frac{1}{n^x} \le g(x) - g_n(x) \le 0.$$

- c) Établir que g est continue sur $]0, +\infty[$.
- **2.** Démontrer que l'expression $\zeta(x)-\frac{1}{x-1}$ admet une limite égale à g(1) lorsque x tend vers 1 par valeurs supérieures.

FIN DU PROBLÈME