Chapitre 21 ESPACES VECTORIELS EUCLIDIENS

(1) PRODUIT SCALAIRE. ORTHOGONALITÉ

Mohamed TARQI

Table des matières

1	Produit scalaire sur un espace vectoriel	1
	1.1 Définitions et propriétés	1
	 1.1 Définitions et propriétés 1.2 Norme et distance associées à un produit scalaire 	2
	1.3 Angle de deux vecteurs	
	1.4 Vecteurs unitaires, vecteurs orthogonaux	
	1.5 Orthogonale d'une partie	
2	Espaces euclidiens	6
	2.1 Existence de bases orthonormales 2.2 Projecteurs orthogonaux	6
	2.2 Projecteurs orthogonaux	8
	2.3 Formes linéaires et hyperplans	ç
3	Orientation. Produit vectoriel	ç
	3.1 Orientation d'un espace euclidien	ç
	3.2 Produit vectoriel dans un espace euclidien orienté de dimension 3	

1 Produit scalaire sur un espace vectoriel

1.1 Définitions et propriétés

Dans ce chapitre *E* est un espace vectoriel réel.

Définition 1.1 On dit qu'une application $f: E \times E \longrightarrow \mathbb{R}$ est un produit scalaire si les propriétés suivantes sont vérifiées :

1. $\forall x, y, x', y' \in E, \lambda, \mu \in \mathbb{R}$:

$$f(\lambda x + \mu x', y) = \lambda f(x, y) + \mu f(x', y)$$

On dit que f est linéaire à gauche.

$$f(x, \lambda y + \mu y') = \lambda f(x, y) + \mu f(x, y')$$

On dit que f est linéaire à gauche.

- 2. $\forall x, y \in E$, f(x, y) = f(y, x). On dit que f est symétrique.
- 3. $\forall x \in E$, $f(x,x) \ge 0$. On dit que f est positive.
- 4. $\forall x \in E$, $f(x,x) = 0 \iff x = 0$. On dit que f est définie.

Remarque : Cette définition s'énonce en disant que f est une forme bilinéaire symétrique définie positive. Notation : Au lieu de noter f(x,y), on note souvent le produit scalaire de x et y par (x|y), ou x.y ou (x|y). En géométrie élémentaire on note $\overrightarrow{x}.\overrightarrow{y}$. **Remarque :** Si le caractère symétrique de *f* est établi, la bilinéarité à droite équivalent à la linéarité à gauche.

Proposition 1.1 (Inégalité de CAUCHY-SCHWARTZ) Soit (|) un produit scalaire sur E. Alors $\forall x, y \in E$, on a :

$$(x|y)^2 \le (x|x)(y|y).$$

De plus il y a égalité si, et seulement si, x et y sont liés.

Démonstration : Soit $\lambda \in \mathbb{R}$, considérons le trinôme :

$$T(\lambda) = (x + \lambda y | x + \lambda y) = \lambda^2(y|y) + 2\lambda(x|y) + (x|x).$$

- 1. Si (y|y) = 0, alors y = 0 et l'inégalité est toujours vérifié, car $(x|x) \ge 0$.
- 2. Si (y|y) = 0, alors, comme $T(\lambda) \ge 0$, $\Delta' = (x|y)^2 (x|x)(y|y) \le 0$.

Le cas d'égalité:

- 1. Si y = 0, y est proportionnel à tout vecteur x.
- 2. Si $y \neq 0$, dans $T(\lambda)$ admet une racine double α tel que $(x + \alpha y | x + \alpha y) = 0$, soit par conséquent $x + \alpha y = 0$. Les x et y sont donc proportionnels.

Exemples:

1. L'application (.|.): $(x,y) \longrightarrow \sum_{k=0}^{n} x_i y_i$, définie sur $\mathbb{R}^n \times \mathbb{R}^n$ est un produit scalaire, c'est le produit scalaire canonique de \mathbb{R}^n . L'inégalité de Cauchy-Schwartz s'écrit :

$$\left(\sum_{k=0}^{n} x_k y_k\right)^2 \le \left(\sum_{k=0}^{n} x_k^2\right) \left(\sum_{k=0}^{n} y_k^2\right)$$

Si on pose X = M(x,B) et Y = M(y,B), alors $(x|y) = {}^t XY$.

2. Soit $E = C([a,b],\mathbb{R})$ l'espace des fonctions continues sur [a,b] (a < b). L'application (f,g) $\longrightarrow \int_a^b f(t)g(t)dt$ est un produit scalaire. L'inégalité de Cauchy-Schwartz s'écrit :

$$\forall f,g \in E, \ \left(\int_a^b f(t)g(t)dt\right)^2 \leq \left(\int_a^b f^2(t)dt\right) \left(\int_a^b g^2(t)dt\right).$$

3. Sur \mathbb{R}^3 , la forme bilinéaire symétrique S définie par :

$$S((x,y,z),(x',y',z')) = xx' + yy' + zz' + \frac{1}{2}(xy' + xz' + yx' + yz' + zx' + zy')$$

est un produit scalaire.

1.2 Norme et distance associées à un produit scalaire

Soit (.|.) un produit scalaire sur E. Posons : $\forall x \in E, \|x\| = \sqrt{(x|x)}$ et considérons l'application de E dans \mathbb{R}^+ définie par : $x \longrightarrow \|x\|$.

Théorème et définition 1.1 Cette application vérifie les propriétés suivantes :

- $\forall x \in E$, $||x|| \ge 0$ et $||x|| \iff x = 0$.
- $\forall x \in E$, $\forall \lambda \in \mathbb{R}$, $||\lambda x|| = |\lambda|||x||$.
- $\forall x, y \in E$, $||x + y|| \le ||x|| + ||y||$. (Inégalité triangulaire)

On dit que l'application $x \longrightarrow ||x||$ est une norme sur E.

Démonstration:

1. $\forall x \in E$, $||x|| = (x|x) \ge 0$ et puisque (.|.) est définie,

$$||x|| = 0 \iff (x|x) = 0 \iff x = 0.$$

- 2. Soit $\lambda \in \mathbb{R}$ et $x \in E$, $\|\lambda x\| = (\lambda x | \lambda x) = \lambda^2(x|x)$. d'où $\|\lambda x\| = |\lambda| \|x\|$.
- 3. $\forall x, y \in E$,

$$||x + y|| = (x + y|x + y)$$

$$= (x|x) + 2(x|y) + (y|y)$$

$$\leq (x|x) + 2(x|x)(y|y) + (y|y)$$

$$\leq [(x|x) + (y|y)]^{2}$$

Remarques:

1. L'inégalité de Cauchy-Schwartz s'écrit donc :

$$\forall x, y \in E, |(x|y)| \le ||x|| ||y||.$$

- 2. Pour tous vecteurs x et y de E, on a : $|||x|| ||y|| \ge ||x y||$.
- 3. Les normes associées aux exemples précédents, s'écrivent respectivement :

(a)
$$\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
, $||x|| = \sqrt{\sum_{k=0}^n x_k^2}$.

(b)
$$\forall f \in C([a,b],\mathbb{R}), \|f\| = \sqrt{\int_a^b f^2(t)dt}.$$

(c)
$$\forall (x, y, z) \in \mathbb{R}^3$$
, $||(x, y, z)|| = \sqrt{x^2 + y^2 + z^2 + xy + xz + yz}$.

Théorème et définition 1.2 Soit (.|.) un produit scalaire sur E et soit $x \longrightarrow ||x||$ la norme associée. L'application $d: E \times E \longrightarrow \mathbb{R}$ définie par d(x,y) = ||x-y|| vérifie les propriétés suivantes :

- $d(x, y) \ge 0$ et $d(x, y) = 0 \iff x = y$.
- $\forall x, y \in E$, d(x, y) = d(y, x).
- $\forall x, y, z \in E$, $d(x, z) \le d(x, y) + d(y, z)$. (Inégalité triangulaire).

Démonstration : La preuve est immédiate, à titre d'exercice.

Proposition 1.2 (Identité du parallélogramme) Soit (.|.) un produit scalaire et ∥.∥ la norme associée. Alors on a :

$$\forall (x, y) \in E^2$$
, $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$.

Démonstration: $\forall \alpha, \beta \in \mathbb{R}, \forall x, y \in E$.

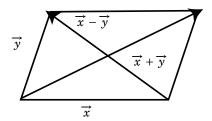
$$\|\alpha x + \beta y\|^2 = \alpha^2 \|x\|^2 + 2\alpha \beta(x|y) + \beta^2 \|y\|^2.$$

en particulier:

$$\begin{cases} \|x + y\|^2 = \|x\|^2 + 2(x|y) + \|y\|^2 \\ \|x - y\|^2 = \|x\|^2 - 2(x|y) + \|y\|^2 \end{cases}$$

Par addition de ces deux équation, on obtient : $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

Interprétation géométrique de l'identité du parallélogramme: La somme des carrés des cotes d'un parallélogramme est égale à la somme des carrés des diagonales.



Remarque: On aussi les égalités qui permettent d'exprimer le produit scalaire en fonction de la norme :

$$(x,y) = \frac{1}{2}(\|x+y\|^2 - (\|x\|^2 - \|y\|^2)) = \frac{1}{4}(\|x+y\|^2 + \|x-y\|^2).$$

1.3 Angle de deux vecteurs

Soit *E* un espace vectoriel muni d'un produit scalaire (.|.). Soient *x* et *y* deux vecteurs non nuls de *E*, alors $||x|| \neq 0$ et $||y|| \neq 0$ et d'après l'inégalité de Cauchy-Schwarz,

$$-1 \le \frac{(x|y)}{\|x\| \|y\|} \le 1,$$

il existe alors un nombre réel θ unique dans $[0,\pi]$ tel que :

$$\cos\theta = \frac{(x|y)}{\|x\| \|y\|}.$$

Ce nombre θ , par définition, est l'angle non orienté des deux vecteurs x et y.

1.4 Vecteurs unitaires, vecteurs orthogonaux

Définition 1.2 *Soit* ||.|| *une norme sur E associée à un produit scalaire* (.|.).

- 1. Un vecteur x de E est unitaire ou normé si ||x|| = 1.
- 2. Deux vecteurs x et y de E sont dites orthogonaux si (x|y) = 0.

Remarques:

- 1. Si $x \neq 0$, les vecteurs $\frac{x}{\|x\|}$ et $\frac{-x}{\|x\|}$ sont unitaires.
- 2. Le seul vecteur qu'et orthogonal à lui même est le vecteur nul.
- 3. L'orthogonalité entre les vecteurs de *E* est une relation symétrique.

Définition 1.3 On dit que la famille $(x_i)_{i \in I}$ de vecteurs de E est orthogonale si les vecteurs x_i sont orthogonaux deux à deux. Si de plus ils sont unitaires, alors la famille est dite orthonormée.

Définition 1.4 Soit $\mathcal{B} = (e_1, e_2, ..., e_n)$ une base de E. Si c'est une famille orthonormée, on dit que \mathcal{B} est une base orthonormée, en abrégé B.O.N.

Remarques:

1. La base $(e_1, e_2, ..., e_n)$ est orthonormale si, et seulement si,

$$\forall (i,j) \in [1,n]^2, \quad (e_i|e_j) = \delta_{ij}$$

où δ_{ij} est le symbole de Kronecker.

2. La base canonique de \mathbb{R}^n est une *B.O.N* pour le produit scalaire canonique.

Proposition 1.3 Si une famille $(x_i)_{i \in I}$ est orthogonale et formée de vecteurs non nuls, alors cette famille est libre.

Démonstration : Soit $x_{i_1}, x_{i_2}, ..., x_{i_n}$ une famille finie de $(x_i)_{i \in I}$ et $\lambda_1, \lambda_2, ..., \lambda_n$ des scalaires tels que $\sum\limits_{j=0}^n \lambda_j x_{i_j} = 0$, alors $\forall k \in [1,n], (x_{i_k}|\sum\limits_{j=0}^n \lambda_j x_{i_j}) = \lambda_k (x_{i_k}|x_{i_k}) = 0$, puisque $x_{i_k} \neq 0$ alors $\lambda_k = 0$. Donc la famille est libre.

Proposition 1.4 Si la famille $(x_i)_{1 \le i \le p}$ est orthogonale, alors

$$\|\sum_{i=1}^{p} x_i\|^2 = \sum_{i=1}^{p} \|x_i\|^2$$
 (Relation de PYTHAGORE).

Démonstration:

$$\|\sum_{i=1}^{p} x_i\|^2 = (\sum_{k=1}^{p} x_k | \sum_{k=1}^{p} x_k)$$

$$= \sum_{k=1}^{p} \|x_k\|^2 + \sum_{i \neq j} (x_i | x_j)$$

$$= \sum_{k=1}^{p} \|x_k\|^2.$$

Remarques:

- 1. Dans le cas où p = 2, il y a équivalence entre (x|y) = 0 et $||x + y||^2 = ||x||^2 + ||y||^2$. En effet, on a pour tout x et y de E, $||x + y||^2 = ||x||^2 + ||y||^2 + 2(x|y)$.
- 2. Dans le plan euclidien le triangle ABC est rectangle en A si, et seulement si, $\|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2 = \|\overrightarrow{BC}\|^2$.

Proposition 1.5 Soit $\mathscr{B} = (e_1, e_2, ..., e_n)$ une B.O.N de E. Pour tout x de E, on a :

$$x = \sum_{k=1}^{n} (x|e_k)e_k.$$

Démonstration : Soit $x = \sum_{k=1}^{n} \lambda_k e_k$ un vecteur exprimé dans la base \mathcal{B} , alors, $\forall j \in [1, n]$,

$$(x|e_j) = (\sum_{k=1}^n \lambda_k e_k | e_j) = \sum_{k=1}^n \lambda_k (e_k | e_j) = \lambda_j (e_j | e_j) = \lambda_j.$$

1.5 Orthogonale d'une partie

Définition 1.5 Soit A une partie de E. On appelle orthogonal de A en on note A^{\perp} , l'ensemble des vecteurs de E qui sont orthogonaux à tous les éléments de A.

Deux parties A et B de E sont dites orthogonales si $\forall a \in A$, $\forall b \in B$, (a|b) = 0.

Remarques:

- 1. On a $E^{\perp} = \{0\}$ et $\{0\}^{\perp} = E$.
- 2. A^{\perp} est toujours un sous-espace vectoriel de E, même si A n'est pas un sous-espace, en effet, soient $x, y \in A^{\perp}$ et $\lambda, \mu \in \mathbb{R}$, alors

$$\forall z \in A$$
, $(\lambda x + \mu y | z) = \lambda(x|z) + \mu(y|z) = 0$

donc $\lambda x + \mu y \in A^{\perp}$.

Proposition 1.6 Si F est un sous-espace vectoriel de E, alors la somme $F + F \perp$ est directe : $F \cap F \perp = \{0\}$.

Démonstration : Soit $x \in F \cap F^{\perp}$ alors $x \in F$, alors (x|z) = 0 pour tout z de F, en particulier (x|x) = 0, donc x = 0. \square

2 Espaces euclidiens

Soit *E* un espace vectoriel réel muni d'un produit scalaire (.|.).

Définition 2.1 1. Un \mathbb{R} -espace vectoriel E muni d'un produit scalaire est dit préhilbertien.

2. Un espace euclidien est une espace préhilbertien réel de dimension finie.

Remarque : Si *E* est un espace vectoriel euclidien, alors tout sous-espace vectoriel de *E* est espace vectoriel euclidien, pour la restriction du produit scalaire.

2.1 Existence de bases orthonormales

Lemme 2.1 Soit e un vecteur non nul de E, alors tout vecteur x de E s'écrit de façon unique sous la forme : $x = \alpha e + y$ avec e et y orthogonaux.

Démonstration : L'unicité : Si $x = \beta e + z$ avec e et z orthogonaux, on a : $(\beta - \alpha)e = y - z$ avec $(\beta - \alpha)e$ et y - z orthogonaux, donc $\beta = \alpha$ et z = y.

L'existence: Le vecteur e n'étant pas nul, posons $\alpha = \frac{(x|e)}{\|e\|^2}$ et $y = x - \alpha e$. Il suffit alors de vérifier que (y|e) = 0, on a :

$$(y|e) = (x - \alpha e|e) = (x|e) - \alpha(e|e) = 0$$

le vecteur αe est la projection orthogonale de x sur Vect(e).

Théorème 2.1 Tout espace vectoriel euclidien admet des bases orthonormales. Plus précisément, si $B = (f_1, f_2, ..., f_n)$ une base de E, alors on peut construire une B.O.N de E telle que :

$$\forall p \in [1, n], \ \text{Vect}(e_1, e_2, ..., e_p) = \text{Vect}(f_1, f_2, ..., f_p).$$

Démonstration : Soit $B = (f_1, f_2, ..., f_n)$ une base de E, nous cherchons une base $B' = (e_1, e_2, ..., e_n)$ une base orthonormée de E.

Soit $e_1 = \frac{f_1}{\|f_1\|}$. On sait que le vecteur f_2 s'écrit de façon unique sous forme $f_2 = \alpha f_1 + f_2'$, f_1 et f_2' orthogonaux. f_2' n'est pas nul, sinon on aurait $f_2 = \alpha f_1$ et les vecteurs f_1 et f_2 ne seraient pas libre. On choisit alors le vecteur e_2 défini par :

$$e_2 = \frac{f_2'}{\|f_2'\|}.$$

Les vecteurs e_1 et e_2 sont orthogonaux, puisque

$$(e_1|e_2) = \left(\frac{f_1'}{\|f_1'\|} | \frac{f_2'}{\|f_2'\|}\right) = 0.$$

On a bien $Vect(e_1) = Vect(f_1)$ et $Vect(e_1, e_2) = Vect(f_1, f_2)$.

La démonstration du théorème se poursuit par récurrence. Supposons construits, pour $1 \le k \le n$, des vecteurs $e_1, e_2, ..., e_k$ qui engendrent le même sous-espace vectoriel que les vecteurs $f_1, f_2, ..., f_k$.

On cherche des nombres réels $\beta_1, \beta_2, ..., \beta_k$ tels que le vecteur :

$$f'_{k} = f_{k+1} + \beta_1 e_1 + \beta_2 e_2 + ... + \beta_k e_k$$

soit orthogonal aux vecteurs $e_1, e_2, ..., e_k$. Les réels $\beta_1, \beta_2, ..., \beta_k$ doivent vérifier les relations :

$$(f'_{k+1}|e_i) = 0, \forall i = 1, 2, ..., k.$$

Ces relations fournissent les coefficients β_i cherchées. Le vecteur f'_{k+1} n'est nul, sinon $f_{k+1} \in \text{Vect}(e_1, e_2, ..., e_k) = \text{Vect}(f_1, f_2, ..., f_k)$, ce qui contraire au fait que (f_i) soit une base. on choisit alors

$$e_{k+1} = \frac{f'_{k+1}}{\|f'_{k+1}\|},$$

c'est un vecteur orthogonal aux vecteurs $e_1, e_2, ..., e_k$. En outre,

$$Vect(e_1, e_2, ..., e_{k+1}) = Vect(f_1, f_2, ..., f_{k+1})$$

Ainsi, par récurrence, on a construit la base (e_i) orthonormée.

Corollaire 2.1 Soit F un sou-espace vectoriel d'un espace vectoriel euclidien E, F^{\perp} le sous-espace orthogonal de F. Alors $E = F \oplus F^{\perp}$.

Démonstration : L'unicité : Supposons que $x = x_1 + x_2 = y_1 + y_2$ avec $x_1, y_1 \in F$ et $y_1, y_2 \in F^{\perp}$, par différence, nous obtenons :

$$x_1 - y_1 = y_2 - x_2 \in F \cap F^{\perp} = \{0\}.$$

Donc $x_1 - y_1 = y_2 - x_2 = 0$.

L'existence: Soit $p = \dim F$, $1 \le p \le n$ et soit $(e_1, e_2, ..., e_p)$ une B.O.N de F; c'est une famille libre de E qui peut être complétée en une base de E, soit $(e_1, e_2, ..., e_p, f_{p+1}, ..., f_n)$. En appliquant à cette base le procédé d'orthonormalisation les premiers vecteurs restent inchangés, on obtient donc une B.O.N de E $(e_1, e_2, ..., e_p, e_{p+1}, ..., e_n)$.

soit $G = \text{Vect}(e_{p+1},...,e_n)$, nous allons montrer que $G = F^{\perp}$. soit $x = \sum_{i=p+1}^{n} \alpha_i e_i \in G$, on a :

$$(x|e_1) = (x|e_2) = \dots = (x|e_n) = 0$$

donc $(x|y) = 0, \forall y \in F$, donc $x \in F^{\perp}$, c'est-à-dire $G \subset F^{\perp}$.

Inversement, soit $z \in F^{\perp}$, $z = \sum_{i=1}^{n} \beta_i e_i$, avec $\beta_i = (z|e_i)$. D'autre part, puisque $z \in F^{\perp}$, on a : $\beta_1 = \beta_2 = ... = \beta_p = 0$, donc

$$z = \sum_{i=p}^{n} \beta_i e_i \in G.$$

D'où
$$F^{\perp} = G$$
.

Remarques:

- 1. par construction la matrice de passage de la base (f_i) à la base (e_i) est triangulaire supérieure à coefficients diagonaux strictement positifs;
- 2. Soit $(f_1, f_2, ..., f_p)$ une famille orthonormale non génératrice de E; on peut la compléter en une B.O.N $(e_1, e_2, ..., e_p, e_{p+1}, ..., e_p, e_{p+1}$

Exemple: Considérons \mathbb{R}^3 muni du produit scalaire :

$$S((x,y,z),(x',y',z')) = xx' + yy' + zz' + \frac{1}{2}(xy' + xz' + yx' + yz' + zx' + zy')$$

dont la norme associée est :

$$\|(x, y, z)\| = \frac{1}{2}\sqrt{(x+y)^2 + (x+z)^2 + (y+z)^2}$$

Construisons une base orthonormée (f_1, f_2, f_3) par le procédé de Schmidt à partir de la base canonique.

- Le vecteur $e_1 = (1,0,0)$ est normée, donc on prend $f_1 = e_1$.
- Cherchons g_2 orthogonal à f_1 de la forme :

$$g_2 = e_2 - \lambda f_1$$

On a $(f_1|f_2) = (f_1|e_2) - \lambda$, donc il suffit de prendre $\lambda = (f_1|e_2) = \frac{1}{2}$, ce qui donne $g_2 = (\frac{-1}{2}, 1, 0)$, donc $f_2 = (\frac{-1}{\sqrt{3}}, \frac{2}{\sqrt{3}}, 0)$. \circ Cherchons g_3 orthogonal à f_1 et f_2 de la forme de la forme

$$g_3 = e_3 - \lambda f_1 - \mu f_2.$$

Il suffit de prendre $\lambda = (f_1|e_3) = \frac{1}{2}$ et $\mu = (f_2|e_3) = \frac{1}{2\sqrt{3}}$, ce qui donne $g_3 = (\frac{-1}{3}, \frac{-1}{3}, 1)$ et $f_3 = \frac{1}{\sqrt{6}}(-1, -1, 3)$.

2.2 Projecteurs orthogonaux

Définition 2.2 Soit F un sous-espace vectoriel de E. La projection p_F sur F parallèlement à F^{\perp} est appelée projection orthogonale sur F.

De même, on appelle symétrie orthogonale par rapport à F la symétrie s_F par rapport à F parallèlement à F^{\perp} .

Soit $\mathscr{B}_F = (e_1, e_2, ..., e_p)$ une base orthonormée de F, alors $\forall x \in E$, $p_F(x) \in F$, donc il existe des scalaires $\lambda_1, \lambda_2, ..., \lambda_p$ tels que : $p_F(x) = \sum_{i=1}^p \lambda_i e_i$.

D'autre part $\forall k \in [1, p], \lambda_k = (e_k | p_F(x)) = (e_k | y) = (e_k | x)$, avec $x = y + z, x \in F, z \in F^{\perp}$. On déduit donc

$$p_F(x) = \sum_{i=1}^p (x|e_i)e_i.$$

Comme $s_F = 2p_F - id_E$, alors pour tout x de E, on a :

$$s_F(x) = 2\sum_{i=1}^{p} (x|e_i)e_i - x.$$

Remarque: Si p est la projection orthogonale sur F, celle sur F^{\perp} est $Id_E - p$.

Proposition 2.1 Soit p une projection vectorielle sur l'espace euclidien E. Les conditions suivantes sont équivalentes :

- 1. La projection p est une projection orthogonale.
- 2. Pour tous vecteurs x et y de E, on a l'égalité :

$$(p(x)|y) = (x|p(y)).$$

- 3. La matrice de p dans toute base orthonormée est symétrique.
- 4. La matrice de p dans une base orthonormée est symétrique.

Démonstration :

1. 1. \Longrightarrow 2. On suppose que p est un projecteur orthogonal, c'est-à-dire $p^2 = p$ et $\ker p = (\operatorname{Im} p)^{\perp}$. soit $(x,y) \in E^2$, on a :

$$(p(x)|y) = (p(x)|y - p(y)) + (p(x)|p(y)) = (p(x)|p(y)),$$

puisque $p(x) \in \text{Im } p \text{ et } y - p(y) \in \text{ker } p$. De même :

$$(x|p(y)) = (x - p(y)|p(y)) + (p(x)|p(y)) = (p(x)|p(y)).$$

D'où : (x|p(y) = (p(x)|y).

- 2. 2. \Longrightarrow 1. On suppose : $\forall (x,y) \in E$, (x|p(y)) = (p(x)|y). On a pour tout $(x,y) \in \ker p \times \operatorname{Im} p$, (x|y) = (x|p(y)) = (p(x)|y) = (0|y) = 0, et donc p est un projecteur orthogonal.
- 3. 2. \Longrightarrow 3. Soit $\mathscr{B} = (e_1, e_2, ..., e_n)$ une base orthonormée et $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n} = M(p, \mathscr{B})$. Alors $p(e_j) = \sum_{i=1}^n a_{ij} e_i$ et $a_{ij} = (e_i | p(e_j)) = (p(e_i) | e_j) = a_{ji}$, donc A est une matrice symétrique.
- 4. $3. \Longrightarrow 4.$ évident.
- 5. 4. \Longrightarrow 1. Soit $\mathscr{B} = (e_1, e_2, ..., e_n)$ une base orthonormée de E. Alors $\forall x = \sum_{i=1}^n x_i e_i, \forall y = \sum_{i=1}^n y_i e_i$, on a :

$$(x|p(y)) = \left(\sum_{i=1}^{n} x_{i}e_{i}|\sum_{j=1}^{n} y_{j}p(e_{j})\right)$$

$$= \left(\sum_{i=1}^{n} x_{i}e_{i}|\sum_{j=1}^{n} y_{j}\sum_{k=1}^{n} a_{kj}e_{k}\right)$$

$$= \sum_{i=1}^{n} \sum_{i=1}^{n} x_{i}y_{j}\left(e_{i}|\sum_{k=1}^{n} a_{kj}e_{k}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}y_{j}a_{ij} = (p(x)|y).$$

П

Définition 2.3 Soit F un sous-espace vectoriel de E, $x \in E$. On appelle distance de x à F, et on note d(x,F), le réel défini par :

$$d(x,F) = \inf_{y \in F} ||x - y||.$$

Proposition 2.2 Soient F un sous-espace vectoriel de E, $x \in E$, on a :

- **1.** $\forall y \in F, ||x y|| \ge ||x p_F(x)||$.
- **2.** $\forall y \in F$, $||x y|| = ||x p_F(x)|| \iff y = p_f(x)$.

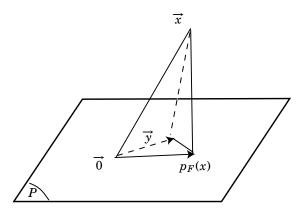
Démonstration:

Il suffit de remarquer que pour tout $y \in F$:

$$||x - y||^2 = ||x - p_F(x) + p_F(x) - y||^2 =$$

$$||x - p_F(x)||^2 + ||p_F(x) - y||^2,$$

puisque $x - p_F(x) \in F^{\perp}$ et $p_F(x) - y \in F$.



Remarque : On déduit, d'après la proposition, que $d(x,F) = ||x - p_F(x)||$.

2.3 Formes linéaires et hyperplans

Soit *E* un espace euclidien et *a* un vecteur de *E*. On définit l'application $\varphi_a : x \longmapsto (x|a)$.

Théorème 2.2 (de la représentation) l'application $a \longrightarrow \varphi_a$ est un isomorphisme de E sur son dual E^* .

Démonstration : $\forall \in E$, l'application $x \mapsto \varphi_a(x)$ est bien un forme linéaire, donc $\varphi_a \in E^*$ et par conséquent l'application $a \mapsto \varphi_a$ est bien définie.

L'application $a \mapsto \varphi_a$ est injective, en effet,

$$\varphi_a = 0 \Longleftrightarrow \varphi_a(x) = 0 \Longleftrightarrow (a|x) = 0 \forall x \in E \Longleftrightarrow x = 0$$

 $\dim E^* = \dim E$ implique $a \longmapsto \varphi_a$ est surjective, donc $\forall l \in E^*$, il existe un seul élément de E tel que $l = \varphi_a$. Autrement dit : Toute forme linéaire l d'un espace vectoriel euclidien s'écrit d'une manière unique sous la forme $l(x) = (x|a), \forall x \in E$.

3 Orientation. Produit vectoriel

3.1 Orientation d'un espace euclidien

Définition 3.1 Soit \mathscr{B} et \mathscr{B}' deux bases d'un espace euclidien de dimension n. On dit que les bases \mathscr{B} et \mathscr{B}' sont de même orientation lorsque $\det_{\mathscr{B}}(\mathscr{B}') > 0$.

C'est-à-dire $\det P > 0$ avec P la matrice de passage \mathscr{B} à \mathscr{B}' . Orienter l'espace E c'est, une base étant fixé, convenir que les bases qui ont même orientation sont les bases directes, et les autres sont les bases indirectes.

Remarque : Pour orienter un plan, on fixe un vecteur $w \notin P$ et les bases directes (u,v) de P sont celles pour les quelles (u,v,w) est une base directe de E.

Définition 3.2 Le produit mixte sur E est le déterminant dans toute base orthonormale directe, on note $[x_1, x_2, ..., x_n]$ le produit mixte de $(x_1, x_2, ..., x_n) \in E^n$.

3.2 Produit vectoriel dans un espace euclidien orienté de dimension 3

Théorème et définition 3.1 Pour tout couple $(x, y) \in E^2$, il existe un unique vecteur $w \in E$ tel que :

$$\forall z \in E, [x, y, z] = (w|z)$$

Le vecteur w est appelé le produit vectoriel de x et z, noté $x \wedge y$.

Démonstration : L'application $z \mapsto [x, y, z]$ est une forme linéaire sur, donc il existe, d'après le théorème de représentation, un unique vecteur w tel que

$$\forall z \in E, [x, y, z] = (w|z).$$

Propriétés:

- 1. On pour tous $x, y, z \in E$: $[x, y, z] = ((x \land y)|z), [x, y, z] = [y, z, x] = ((y \land z)|x), [x, y, z] = [z, y, x] = ((z \land y)|x).$
- 2. Si (i, j, k) est une base orthonormée directe de E, alors : $i \land j = k$, $j \land k = i$ et $k \land i = j$.

Proposition 3.1 L'application $(x,y) \longrightarrow x \land y$ est une forme bilinéaire alternée.

Démonstration: Soient $\alpha \in \mathbb{R}$, $x, y, y' \in E$.

- $-\forall z \in E$, $((y \land x)|z) = [y,x,z] = -[x,y,z] = -((x \land y)|z)$, d'où par unicité de $x \land y$, on a : $x \land y = -(y \land x)$.
- $\forall z \in E$,

$$(x \wedge (\alpha y + y')|z) = [x, \alpha y + y', z]$$

$$= \alpha[x, y, z] + [x, y', z]$$

$$= \alpha((x \wedge y)|z) + ((x \wedge y')|z)$$

$$= ([\alpha(x \wedge y) + x \wedge y']|z)$$

d'où par unicité de $x \land (\alpha y + y') : x \land (y + y') = \alpha(x \land y) + x \land y'$.

- La linéarité par rapport à la première variable résulte de la linéarité de la deuxième variable et de l'alternance.

Proposition 3.2 $\forall (x,y) \in E^2$, $x \land y = 0 \iff \{x,y\}$ **est liée.**

Démonstration : • si x et y est liée, alors $x \land y = 0$.

• Réciproquement, supposons $x \land y = 0$, si $\{x, y\}$ est libre, il existe $z \in E$ tel que $\{x, y, z\}$ soit une base de E et alors $(x \land y|z) = [x, y, z] \neq 0$, contradiction. Donc la famille $\{x, y\}$ est liée.

Corollaire 3.1 Si $\{x,y\}$ est libre, alors $\{x,y,x \land y\}$ est une base directe de E.

Démonstration : En effet, $[x, y, x \land y] = ((x|y)|(x|y)) = ||x \land y||^2 > 0$.

Proposition 3.3 Soient $B = (\vec{i}, \vec{j}, \vec{k})$ une base orthonormée de E, $u, v \in E$, (x, y, z) (resp. (x', y', z')) les composantes de u (resp. v) dans B, on a :

$$u \wedge v = (yz' - y'z)\overrightarrow{i} + (zx' - xz')\overrightarrow{j} + (xy' - yx')\overrightarrow{k}.$$

Démonstration : C'est immédiate, on peut retenir ce résultat sous la forme schématique :

$$u \wedge v = \left| \begin{array}{ccc} x & x' & \overrightarrow{i} \\ y & y' & \overrightarrow{j} \\ z & z' & \overrightarrow{k} \end{array} \right|.$$

Proposition 3.4 $\forall (u, v, w) \in E^3$, $(u \land (v \land w)) = (u|w)v - (u|v)w$.

Cours de Mathématiques MP

Démonstration:

- Si v = 0, la propriété est immédiate.
- Si $v \neq 0$ et si w est colinéaire à v, il existe $\lambda \in \mathbb{R}$ tel que $w = \lambda v$, d'où :

$$(u|w)v - (u|v)w = \lambda(u|v) - \lambda(u|v) = 0 = u \wedge (v \wedge w).$$

− Si (v,w) libre, il existe une base orthonormée directe (I,J,K) et $\alpha,\beta,\gamma,\alpha,b,c \in \mathbb{R}$ tels que :

$$\begin{cases} v = \alpha I \\ w = \beta I + \gamma J \\ u = \alpha I + bJ + cK \end{cases}$$

(d'après le procédé d'orthonormaliastion de Schmidt). On a alors : $v \wedge w = \alpha \gamma K$, d'où $u \wedge (v \wedge w) = -a\alpha \gamma J + a\gamma b I$ et $(u|w)v - (u|v)w = b\gamma \alpha I - a\alpha \gamma J$. D'où la formule demandée.

Proposition 3.5 $\forall u, v \in E, \|u \wedge v\|^2 + (u|v)^2 = \|u\|^2 \|v\|^2$. (Identité de LAGRANGE).

Démonstration: En effet, d'après le dernière proposition, on a :

$$||u \wedge v|| = ((u \wedge v)|(u \wedge v)) = [u, v, u \wedge v] = [v, u \wedge v, u]$$

$$= (v \wedge (u \wedge v)|u) = (((v|v)u - (v|u)v)|u)$$

$$= (v|v)(u|u) - (v|u)(u|v) = ||u||^{2}||v||^{2} - (u|v)^{2}.$$

•

• • • • • • • • •