CPGE IBN ABDOUNE - KHOURIBGA — MPSI —

SÉRIE *n*°12

Espaces vectoriels (2)

Année scolaire 05/06

Exercice 1

Montrer que les familles suivantes sont libres.

- 1. $(f_n)_{n\in\mathbb{N}}$, avec $\forall n\in\mathbb{N}$, $\forall x\in\mathbb{R}$, $f_n(x)=x^n$.
- 2. $(f_n)_{n\in\mathbb{N}^*}$, avec $\forall n\in\mathbb{N}^*$, $\forall x\in\mathbb{R}$, $f_n(x)=\sin^n(x)$.
- 3. $(f_{\alpha})_{\alpha \in \mathbb{R}}$, avec $\forall \alpha \in \mathbb{R}$, $\forall x \neq \alpha$, $f_{\alpha}(x) = \frac{1}{x \alpha}$.
- 4. $(f_{\alpha})_{\alpha \in \mathbb{R}}$, avec $\forall \alpha \in \mathbb{R}$, $\forall x \in \mathbb{R}$, $f_{\alpha}(x) = |x \alpha|$.

Exercice 2

Soit $D = \mathbb{R} \setminus \{1\}$. On pose :

$$E = \{ f : D \longmapsto \mathbb{R}/\forall x \in D, f(x) = \frac{P(x)}{x^3 - 1} \quad et \quad P \in \mathbb{R}_2[X] \}$$

- 1. Montrer que *E* est un espace vectoriel réel.
- 2. Soient f, g et h des fonctions de E définies, pour tout $x_i n \mathbb{R}$, par :

$$f(x) = \frac{1}{x-1}, g(x) = \frac{x}{x^2+x+1}, h(x) = \frac{1}{x^2+x+1}$$

Montrer que B = (f, g, h) est une base de E.

3. Déterminer les coordonnées de la fonction $l: x \mapsto \frac{1}{x^3 - 1}$ dans cette base.

Exercice 3

Soit $E = \mathbb{R}^3$. F_1 et F_2 des sous-espaces vectoriel de E définis par :

$$F_1 = \{(a, -b, a+b)/a, b \in \mathbb{R}\}$$

et

$$F_2 = \{(k, 2h + k, -2h) / h, k \in \mathbb{R}\}$$

- 1. Donner une base et la dimension de chacun de ces deux espaces.
- 2. Déterminer $F_1 \cap F_2$ et sa dimension m. et $F_1 + F_2$ et sa dimension n.
- 3. Vérifier que :

$$\dim(F_1 + F_2) + \dim(F_1 \cap F_2) = \dim F_1 + \dim F_2$$

Exercice 4

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 définie par :

$$f(x,y) = (-x + y, x - 3y, 2x - 3y)$$

- 1. Déterminer le noyau et l'image de f.
- 2. Déterminer dim Ker f et rgf vérifier que dim $\mathbb{R}^2 = \dim \operatorname{Ker} f + rgf$

Exercice 5

Soit E un espace vectoriel de dimension finie n et u un endomorphisme de E vérifiant $u^n = 0$ et $u^{n-1} \neq 0$. Montrer qu'il existe un vecteur a tel que la famille $(a, u(a), u^2(a), \dots, u^{n-1}(a))$ soit une base de E.

Exercice 6

Soient E un espace vectoriel sur \mathbb{K} et f un endomorphisme de E. Montrer que si , pour tout x de E, les vecteurs x et f(x) sont colinéaires, f est une homothétie.

Exercice 7

Soit E un espace vectoriel de dimension finie n et f un endomorphisme de E.

Soit $\{a_1, a_2, ..., a_n\}$ une base de E telle que $\{a_{p+1}, a_{p+2}, ..., a_n\}$ soit une base de Ker f.

- 1. Montrer que $\{f(a_1), f(a_2), ..., f(a_p)\}$ est une base de Im f.
- 2. En déduire que

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim E$$

Exercice 8

Étude des suites récurrentes : $u_{n+2} = au_{n+1} + bu_n$.

a et b étant deux nombres réels $(b \neq 0)$, on considère l'ensemble S de suites $(u_n)_{n\geq 0}$ de nombres réels telles que : $(\forall n\geq 0),\ u_{n+2}=au_{n+1}+bu_n.$

On pose, pour $(u_n)_{n>0}$, $(v_n)_{n>0} \in S$ et $r \in \mathbb{R}$.

$$(u_n) + (v_n) = (u_n + v_n)$$
 et $r(u_n) = (ru_n)$

 1^{re} partie : Structure vectorielle de S.

- 1. Démontrer que S est un sous-espace vectoriel de l'espace, sur \mathbb{R} , de toutes les suites réelles.
- 2. Démontrer que l'application

$$\varphi: \begin{array}{ccc} S & \longmapsto & \mathbb{R}^2 \\ (u_n)_{n\geq 0} & \longmapsto & (u_0,u_1) \end{array}$$

est un isomorphisme d'espaces vectoriels. En déduire la dimension de *S*.

 2^e partie : Détermination pratique des suites vérifiant : $u_{n+2} = au_{n+1} + bu_n$.

- 1. Soit $\lambda \in \mathbb{R}$, déterminer une condition nécessaire et suffisante pour que la suite géométrique $(\lambda^n)_{n\geq 0}\in S$.
- 2. On désigne par λ et μ les racines de $x^2 ax b = 0$ et $\triangle = a^2 + 4b$

- a) Montrer que si $\triangle > 0$, alors les deux suites $(\lambda^n)_{n>0}$, $(\mu^n)_{n>0}$ forment une base de S.
- b) Si $\lambda = \mu$, montrer que $(n\lambda^n)_{n\geq 0} \in S$ et que les deux suites $(\lambda^n)_{n\geq 0}$, $(n\lambda^n)_{n\geq 0}$ forment une base de S.
- c) Si $\triangle < 0$, alors l'équation $x^2 ax b = 0$ a deux racines complexes conjugués $re^{i\theta}$ et $re^{-i\theta}$. Montrer que les deux suites $(r^n\cos n\theta)_{n\geq 0}, (r^n\sin n\theta)_{n\geq 0}\in S$ et qu'elles forment une base de S.

3^e partie : Applications.

1. Détermnier les suites vérifaint :

$$(1) \left\{ \begin{array}{lll} u_{n+2} & = & -u_{n+1} + 2u_n \\ u_0 & = & 1 \\ u_1 & = & 0 \end{array} \right. \quad (2) \left\{ \begin{array}{lll} u_{n+2} & = & -u_{n+1} - u_n \\ u_0 & = & 1 & \text{On po} \\ u_1 & = & 2 & 1. \text{ Mod} \end{array} \right.$$

(3)
$$\begin{cases} u_{n+2} = 4u_{n+1} - 4u_n \\ u_0 = 1 \\ u_1 = -2 \end{cases}$$

- 2. Montrer que la suite définie par : $c_0 = 1, c_0 = e$, $c_{n+2} = \sqrt{c_{n+1}c_n}$ est convergente et déterminer sa limite.
- 3. Pour $x \in]-1,1[$, on pose $I_n(x)=\int_0^\pi \frac{\cos nt}{1-x\cos t}dt.$ Déterminer une relation de récurrence entre I_n,I_{n-1},I_{n-2} , en déduire l'expression de I_n . (On pourra calculer I_n+I_{n-2})

Exercice 9

- 1. Montrer que le réel $\theta = \sqrt[3]{2}$ est irrationnel.
- 2. Montrer que la famille $(1, \theta, \theta^2)$ est libre dans \mathbb{R} , en tant que Q-espace vectoriel.
- 3. On désigne par F l'ensemble des combinaisons linéaires à coefficients rationnels de $(1, \theta, \theta^2)$. Montrer que F est un \mathbb{Q} -espace vectoriel et un anneau.
- 4. Soit *x* un élément non nul de *F*. On considère l'application :

$$\varphi_x: F \longrightarrow F$$
$$y \longmapsto xy$$

- a) Montrer que φ_x est Q-linéaire.
- b) Montrer que φ_x est injective.
- c) En déduire que F est un corps. Montrer que F est le plus petit sous-corps de $\mathbb R$ contenant le nombre réel θ .

Exercice 10

Soit u un endomorphisme de rang 1 d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer qu'il existe un scalaire λ et un seul tel que $u^2 = \lambda u$.
- 2. Si E est de dimension finie et $\lambda \neq 1$, montrer que $u I_E$ est un automorphisme et calculer son inverse en fonction de u.

Exercice 11

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \geq 2$. On pose $f^0 = id_E$, $f^k = f \circ f^{k-1}$, $N_k = \operatorname{Ker} f^k$, $I_k = \operatorname{Im} f^k$, k > 1.

- 1. Montrer que s'il existe un entier p tel que $N_p = N_{p+1}$, alors $N_{p+1} = N_{p+2}$.
- 2. Montrer qu'il existe un unique $p_0 \in N$ tel que :

$$p \ge p_0 \Longrightarrow N_p = N_{p_0}, \ p < p_0 \Longrightarrow N_p \subset N_{p+1} \ et \ N_p \ne N_{p+1}$$

3. Montrer que : $E = I_{p_0} \oplus N_{p_0}$.

$\frac{u_n}{u_n} = \frac{12}{12} - \frac{12}{12} = \frac{$

On pose : $E = \mathbb{R}_n[X]$, $n \in \mathbb{N}^*$

- 1. Montrer qu'un ensemble de polynômes de degrés respectifs $\{0,1,2,...n\}$ en forme une base de E.
- 2. f étant de degré n, on pose :

$$u_0 = f(X), u_1 = \triangle u_0 = f(X+1) - f(X), u_k = \triangle u_{k-1},$$

 $1 \le k \le n.$

Calculer u_k en fonction de $\{f(X), f(X+1), ..., f(X+n)\}$. Montrer que $\{u_0, u_1, ...u_n\}$ et $\{f(X), f(X+1), ..., f(X+n)\}$ sont des bases de E.

Exercice 13

On considère la suite $(a_n)_{n \in \mathbb{N}}$ de nombres réels définie par :

$$a_0 = 1 \text{ et } \forall n \ge 1, \sum_{k=0}^{n-1} \frac{a_k}{(n-k)!} = 0$$

On pose pour tout $n \in \mathbb{N}$, $A_n = \sum_{k=0}^n \frac{a_k}{(n-k)!} X^{n-k}$. En particulier on a, pour n = 1, 2, 3:

$$a_1 = -\frac{1}{2}, a_2 = \frac{1}{12}, a_3 = 0$$

$$A_1 = X - \frac{1}{2}, A_2 = \frac{1}{2}X^2 - \frac{1}{2}X + \frac{1}{12}, A_3 = \frac{1}{6}X^3 - \frac{1}{4}X^2 + \frac{1}{12}X$$

1. Montrer que $(A_n)_{n\in\mathbb{N}}$ est l'unique suite de polynômes vérifiant :

(i)
$$A_0 = 1$$
 (ii) $\forall n \in \mathbb{N}^* A'_n = A_{n-1}$ (iii) $A_n(0) = A_n(1)$.

2. a) Déduire de la propriété d'unicité de 1) que :

$$\forall n \in \mathbb{N} \quad A_n(X) = (-1)^n A_n(1-X)$$

- b) Montrer que $\forall n \in \mathbb{N}^* \ A_n(X+1) A_n(X) = \frac{X^{n-1}}{(n-1)!}$.
- c) Soit n un entier impair et supérieur ou égal à 3. Montrer que A_n est divisible par X(X-1)(2X-1) et que $a_n=0$.
- 3. On pose $\forall n \in \mathbb{N}^*$, $\forall m \in \mathbb{N}$, $S_n(m) = \sum_{k=0}^m k^n$.
 - a) Exprimer $S_n(m)$ en fonction de $A_n(m+1)$ et a_{n+1} .
 - b) Déterminer $S_2(m)$.

- 4. Montrer que $(A_k)_{0 \le k \le n}$ est une base de $E = \mathbb{R}_n[X]$.
- 5. On considère les endomorphismes de *E* définis par :

- a)) Montrer que $D^{n+1}=\triangle^{n+1}=0$ et que $\triangle=\sum_{k=1}^n \frac{D^k}{k!}$.
- b) Montrer que $\operatorname{Ker}(\triangle) = \mathbb{R}_0[X]$ et $\operatorname{Im}(\triangle) = \mathbb{R}_{n-1}[X]$. En déduire qu'il existe un unique $Q \in E$ tel que $\triangle(Q) = D(P)$ et Q(0) = P(0).
- c) On pose u(P) = Q. Montrer que $u \in GL(E)$.
- d) Montrer que : $\forall P \in E \ u(P) = P(X) + \sum_{k=1}^{n} a_k [P^{(k)}(X) P^{(k)}(0)].$

Exercice 14

Soit E un espace vectoriel de dimension finie, et f, g deux endomorphisme de E.

Montrer que rg(f+g) = rgf + rgg si et seulement si $\begin{cases} \operatorname{Im} f \cap \operatorname{Im} g = \{0\} \\ E = \operatorname{Ker} f + \operatorname{Ker} g \end{cases}$

Exercice 15

Déterminer le rang, une relation de dépendance linéaire liant les vecteurs du système S et une base de sous-espace vectoriel engendré par S dans les cas suivants :

1.
$$S = \{(1,1,1,3), (1,2,-1,2), (1,2,3,-2), (2,-1,0,3), (1,-1,2,-2)\}$$

2.
$$S = \{(2+2t, -5t+7, 9), (1+t, 1, 2), (-2-2t, 3t-5, 5-3t^2)\}\ (t \in \mathbb{R})$$

3.
$$S = \{(a,1,1), (-1,b,-1), (-1,-1,a)\}\ (a,b \in \mathbb{R}).$$

Exercice 16

Soit E un espace vectoriel sur \mathbb{R} et $f \in \mathcal{L}(E)$ tel que $f^2 = -id_E$.

- 1. Montrer que *f* est bijectif.
- 2. On suppose que les 2p-1 vecteurs $x_1, x_2, ... x_p$, $f(x_1), f(x_2), ... f(x_{p-1})$ sont linéairement indépendantes.

Montrer que les 2p vecteurs $x_1, x_2, ... x_p$, $f(x_1), f(x_2), ... f(x_{p-1}), f(x_p)$ sont linéairement indépendantes.

3. On suppose que E est de dimension finie. Montrer que E possède une base de la forme $\{e_1,e_2,...e_p,f(e_1),f(e_2),...f(e_p)\}$ et qu'il est de dimension paire.

Exercice 17

Dans $\mathbb{R}[X]$, on considère la base constituée des trois polynômes 1, 1 + 2X et $X + X^2$.

Exprimer la base duale de cette base.

Même question pour la base constituée des trois polynômes : 1, $X^2 - X$ et $X^2 - X$.

Exercice 18

Sur $E = \mathbb{R}_n[X]$, on définit les n + 1 formes linéaires :

$$\varphi_k: P \longrightarrow P^{(k)}(0)$$

Montrer que la famille :

 $\{\varphi_0,\varphi_1,...,\varphi_n\}$

est une base de E^*

• • • • • • • • •