ESPACES VECTORIELS NORMÉS (1)

Exercice 1 Soit p une semi-norme sur $\mathscr{M}_n(\mathbb{C})$ (c'est-à-dire il manque juste l'axiome $p(A)=0 \Longrightarrow A=0$). On suppose de plus que $\forall (A;B) \in (\mathscr{M}_n(\mathbb{C}))^2$, $p(AB) \leq p(A)p(B)$. Montrer que p=0 ou p est en fait une norme.

Exercice 2 Soient $E = \mathscr{C}([0,1],\mathbb{R})$, $\|.\|_1$, $\|.\|_2$, $\|.\|_\infty$ les normes sur E définies par :

$$||f||_1 = \int_0^1 |f(t)|dt, \quad ||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}}, \quad ||f||_\infty = \sup_{x \in [0,1]} |f(x)|.$$

- 1. Montrer que f de E, $||f||_1 \le ||f||_2$ et $||f||_2 \le ||f||_{\infty}$.
- 2. Démontrer que $\|.\|_1, \|.\|_2\|, \|.\|_{\infty}$ sont deux à deux non équivalentes.

Exercice 3 Montrer que, dans un espace vectoriel normé, toute boule ouverte (resp. fermée) est convexe.

Exercice 4 On pose $l^{\infty}=\{(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}/(|u_n|)_{n\in\mathbb{N}}\text{ est born\'ee}\}.$ Pour tout $u=(u_n)_{n\in\mathbb{N}}\in l^{\infty}$, nous posons $N(u)=\sum_{n=0}^{\infty}\frac{|u_n|}{4^n}$ et $\|u\|_{\infty}=\sup_{n\in\mathbb{N}}|u_n|.$

- 1. Montrer que N et $\|.\|_{\infty}$ sont des normes dans l^{∞} , sont-elles équivalentes?
- 2. (E, N) est-il complet?
- 3. (E, N) et (E, N) sont-ils compacts?
- 4. Les boules unités sont-elles compactes?

Exercice 5 Normes de Hölder sur \mathbb{K}^n . Soient $n \in \mathbb{N}^*$, $p \in]1, +\infty[$, $q = \frac{p}{p-1}$, donc $\frac{1}{p} + \frac{1}{q} = 1$.

1. Montrer que $\forall (a,b) \in \mathbb{R}^2_+, \ ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$. On note $\|.\|_p : \mathbb{K}^n \longrightarrow \mathbb{R}$ l'application définie par :

$$\forall x = (x_1, x_2, ..., x_n) \in \mathbb{K}^n, \ \|x\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}},$$

et de même pour $\|.\|_q$.

2. Montrer, que pour $(x, y) \in (\mathbb{K}^n)^2$:

(a)
$$\left| \sum_{k=1}^{n} \overline{x_k} y_k \right| \le \|x\|_p \|y\|_q$$
, où $x = (x_1, x_2, ..., x_n)$ et $y = (y_1, y_2, ..., y_n)$.

- (b) $||x+y||_p \le ||x||_p + ||y||_p$.
- 3. En déduire que $\|.\|_p$ est une norme sur \mathbb{K}^n , appelée norme de Hölder.
- 4. Montrer, que tout $x=(x_1,x_2,...,x_n)$ de \mathbb{K}^n , la suite $(\|x\|_p)_{p\in\mathbb{N}}$ tend vers $\|x\|_{\infty}$, où $\|x\|_{\infty}=\max_{k\in[1,n]}|x_k|$.
- 5. Dessiner les "boules unités " de \mathbb{R}^2 dans le cas où $p \in \{\frac{2}{3}, 1, \frac{3}{2}, 2, +\infty\}$.
- 6. Montrer que si $0 , <math>\|.\|_p$ n'est pas une norme sur \mathbb{R}^n (si $n \ge 2$).

Exercice 6 1. Soit $(A_n)_{(n \in \mathbb{N})}$ une suite de parties ouvertes de \mathbb{R}^2 . Est-ce que la réunion des A_n est encore une partie ouverte? Et leur intersection?

2. Même question pour une famille de parties fermées.

Exercice 7 Déterminer si chacune des parties suivantes du plan sont ouvertes ou fermées, ou ni l'un ni l'autre. Déterminer chaque fois l'intérieur et l'adhérence.

1.
$$A_1 = \{(x, y) \in \mathbb{R}^2 / x^2 y^2 > 1\},$$

Année scolaire: 12/13

Filère MP

Prof: M.Tarqi

Année scolaire : 12/13 Filère MP Prof : M.Tarqi

2.
$$A_2 = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 = 1, y > 0\}.$$

Exercice 8 Soit $a \in \mathbb{R}$. On pose pour $P \in \mathbb{R}[X]$: $N_a(P) = |P(a)| + \int_0^1 |P'(t)| dt$. Montrer que

- 1. N_a est une norme.
- 2. N_0 et N_1 sont équivalentes.
- 3. Si $a, b \in [0, 1]$, alors N_a et N_b sont équivalentes.
- 4. Soit $P_n = \left(\frac{X}{2}\right)^n$. Déterminer pour quelles normes N_a la suite $(P_n)_{n \in \mathbb{N}}$ est convergente et quelle est sa limite.
- 5. Si $0 \le a < b$ et b > 1 alors aucune des normes N_a , N_b n'est plus fine que l'autre.

Exercice 9 Soit E un espace vectoriel normé réel et A, B deux parties de E. On note

$$A + B = \{a + b/(a, b) \in A \times B\}$$

Si A est ouvert(et B quelconque), montrer que A + B est ouvert de E.

Exercice 10 Montrer qu'entre deux réels distincts, il existe un rationnel (ou encore montrer que \mathbb{Q} est dense dans \mathbb{R}).

Exercice 11 Soit $A = \left\{ \left(t, \sin \frac{1}{t} \right) \in \mathbb{R}^2 / t > 0 \right\}$. Montrer que A n'est ni ouvert ni fermé. Déterminer l'adhérence \overline{A} de A.

Exercice 12 Soit *F* un sous-espace vectoriel de *E*, espace vectoriel normé.

- 1. Montrer que son adhérence \overline{F} est un sous-espace vectoriel de E.
- 2. En déduire qu'un hyperplan est soit fermé soit dense dans *E*.

Exercice 13 On note $\mathbb{U} = \{z \in \mathbb{C}/|z| = 1\}$ et $N : \mathbb{C}[X] \longrightarrow \mathbb{R}$ l'application définie par :

$$\forall P \in \mathbb{C}[X], \ N(P) = \sup_{z \in \mathbb{U}} |P(z)|.$$

- 1. Montrer que N est une norme sur $\mathbb{C}[X]$.
- 2. $(\mathbb{C}[X], N)$ est-il complet.

Exercice 14 TOPOLOGIE DE $\mathcal{M}_n(\mathbb{R})$

- 1. Montrer que $GL_n(\mathbb{R})$ est un ouvert de $\mathscr{M}_n(\mathbb{R})$, dense dans $\mathscr{M}_n(\mathbb{R})$.
- 2. Montrer que $\mathcal{O}_n(\mathbb{R})$ est compact. $\mathcal{O}_n(\mathbb{R})$ est-il convexe?
- 3. Montrer que $\mathscr{S}_n(\mathbb{R})$ est fermé.
- 4. Soit $p \in [0, n]$. Montrer que l'ensemble \mathcal{R}_p des matrices de rang inférieur ou égal à p est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- 5. Montrer que l'ensemble des matrices diagonalisables dans $\mathscr{M}_n(\mathbb{C})$ est dense dans $\mathscr{M}_n(\mathbb{C})$. Peut-on remplacer $\mathscr{M}_n(\mathbb{C})$ par $\mathscr{M}_n(\mathbb{R})$?
- 6. Propriétés topologiques de l'ensemble des triplets de réels (a,b,c) tels que la forme quadratique $(x,y) \mapsto ax^2 + 2bxy + cy^2$ soit définie positive?
- 7. Montrer que l'ensemble $\mathscr S$ des matrices stochastiques (matrices (a_{ij}) $_{1 \le i,j \le n} \in \mathscr M_n(\mathbb R)$ telles que $\forall (i,j) \in [1,n]^2, \ a_{ij} \ge 0$ et $\forall i \in [1,n], \ \sum_{i=1}^n a_{ij} = 1$) est un compact convexe de $\mathscr M_n(\mathbb R)$.
- 8. Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$ est connexe par arcs.

• • • • • • • • •