CPGE IBN ABDOUNE - KHOURIBGA— MP

SÉRIE $n^{\circ}6$ Réduction des endomorphismes

Année scolaire 15/16

— I ———

COMPLÉMENT D'ALGÈBRE

LINÉAIRE

Exercice 1

On considère un entier naturel n non nul et une application h continue de $\mathbb R$ dans $\mathbb R$. On suppose de plus h non constante.

Pour tout élément k de [0, n], on définit l'application

$$f_k: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto f_k(x) = (h(x))^k.$$

Montrer que la famille $S = (f_0, f_1, ..., f_n)$ est une famille libre de l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} .

Exercice 2

On considère un entier n non nul et on note E l'ensemble des polynômes de degré inférieure ou égal à n. Pour tout $k \in [0, n]$, on définit le polynôme $P_k = X^k (X - 1)^{n-k}$.

- 1. Montrer que la famille $\mathcal{B} = (P_0, P_1, ..., P_n)$ est une base de E.
- 2. Déterminer les coordonnées dans cette base des polynômes P=1 et $Q=\left(X-\frac{1}{2}\right)^n$.

- Exercice 3

Soit $n \in \mathbb{N}^*$. On note E l'espace vectoriel des polynômes de $\mathbb{R}[X]$ de degré inférieur ou égal à n et on considère l'ensemble

$$F = \{ P \in E / P(1) = 0 \}.$$

- 1. Montrer que l'application φ de E dans \mathbb{R} qui à tout polynôme P associe P(1) est linéaire. En déduire que F est un sous-espace vectoriel de E.
- 2. Déterminer la dimension et donner une base de *F*.

- Exercice 4

Soit $E = \mathbb{R}_n[X]$ muni de la base $\mathscr{B} = 1, X, ..., X^n$. Pour tout i de $\{0, ..., n\}$, on définit une forme linéaire f_i sur E par

$$\forall j \in \{0, ..., n\}, \ f_i(X^j) = \left\{ \begin{array}{ll} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{array} \right.$$

- 1. Démontrer que $(f_0, ..., f_n)$ est une base de E^* .
- 2. On considère les deux éléments φ et φ de E^* définis par, pour tout $P \in E$, $\varphi(P) = P(1)$ et $\varphi(P) = P'(0)$. Déterminer les coordonnées de chacune des formes φ et φ dans la base $(f_0, ..., f_n)$.

Exercice 5

Soit $n \in \mathbb{N}^*$ et soit la matrice

$$M = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & C_1^1 & C_2^1 & \cdots & C_n^1 \\ 0 & 0 & C_2^2 & \cdots & C_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & C_n^n \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

On associant à M un endomorphisme, montrer que M est inversible et calculer M^{-1} .

Exercice 6 -

Soient A et B deux éléments de $\mathcal{M}_n(\mathbb{R})$. Montrer que si A et B sont semblables dans $\mathcal{M}_n(\mathbb{C})$, elles le sont dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 7 -

- 1. a) Soit $f \in \mathcal{M}_n(\mathbb{K})^*$ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que pour tout $X \in \mathcal{M}_n(\mathbb{K})$, f(X) = Tr(AX).
 - b) En déduire que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ contient une matrice inversible.
- 2. Déterminer les éléments $f \in \mathcal{M}_n(\mathbb{K})^*$ tels que pour tout $X, Y \in \mathcal{M}_n(\mathbb{K}), f(XY) = f(YX).$

— Exercice 8 –

Soit $H \in \mathcal{M}_n(\mathbb{C})$ une matrice de rang 1.

- 1. Montrer qu'il existe des matrices $U, V \in \mathcal{M}_{n,1}(\mathbb{K})$ telles que $H = U^t V$.
- 2. En déduire $H^2 = \text{Tr}(H)H$.
- 3. On suppose $\text{Tr}(H) \neq -1$. Montrer que $I_n + H$ est inversible et $(I_n + H)^{-1} = I_n \frac{1}{1 + \text{Tr}(H)}H$.
- 4. Soient A ∈ $\mathbf{GL}_n(\mathbb{K})$ telle que $\mathrm{Tr}(HA-1) \neq -1$. Montrer que A+H est inversible et

$$(A+H)^{-1} = A^{-1} - \frac{1}{1 + \text{Tr}(HA^{-1})} A^{-1}HA^{-1}$$

Exercice 9 —

Une transvection d'un espace vectoriel E est une application $f: E \longrightarrow E$ de la forme

$$x \longmapsto x + \gamma(x)u$$

où u est un vecteur donné non nul de E et γ est une forme linéaire sur E telle que $\gamma(u)=0$.

1. Démontrer que toute transvection f de E est un endomorphisme vérifiant :

$$(f-id_E)\circ (f-id_E)=0.$$

2. Réciproquement, soit *g* un endomorphisme de *E* vérifiant :

$$(*) \quad (g - id_E) \circ (g - id_E) = 0.$$

- a) Vérifier que l'on a : $Im(g id_E) \subset Ker(g id_E)$.
- b) Démontrer dans le cas $\dim(E) = 2$ ou 3, on a forcément : $g = id_E$ ou $\dim(\operatorname{Im}(g id_E)) = 1$.
- c) Déduire que si dim E = 2 ou 3 alors g est une transvection.
- d) Dans le cas où dim $E \ge 4$, définir un endomorphisme g vérifiant (*) et qui n'est pas une tranvection.

— Exercice 10 —

 $\mathbb{R}_n[X]$ désigne l'espace vectoriel réel des polynômes de degré inférieur ou égal à n, n étant un entier naturel non nul.

1. Si $x_0, x_1, x_2, ..., x_n$ sont (n + 1) réels distincts, montrer que les polynômes définis par :

$$L_i(X) = \prod_{j=0, i\neq j}^{n} \frac{(X-x_j)}{(x_i-x_j)},$$

pour $i \in [0, n]$ forment une base de $\mathbb{R}_n[X]$.

- 2. On donne de plus (n+1) réels : $y_0, y_1, y_2, ..., y_n$. Montrer qu'il existe un et un seul polynôme L de $\mathbb{R}_n[X]$ tel que : $\forall i \in [\![0,n]\!], L(x_i) = y_i$. Écrire L à l'aide des L_i .
- 3. Calculer les sommes : $\sum_{i=0}^{n} L_i(X)$ et $\sum_{i=0}^{n} x_i L_i(X)$.
- 4. Soit f la fonction définie sur \mathbb{R} par : $f(t) = \frac{1}{t+a^2}$, a désignant un réel strictement positif. Aux réels distincts $t_0, t_1, t_2, ..., t_n$ de \mathbb{R} , on associe les réels $z_i = f(t_i)$, et le polynôme L de $\mathbb{R}_n[X]$ tel que : $\forall i \in [0,n]$, $L(t_i) = z_i$. Montrer que le coefficient du terme de plus haut degré de L est $\frac{(-1)^n}{\prod_{i=0}^n (t_i + a^2)}$.

On pourra calculer de deux façons la dérivée d'ordre n de L.

RÉDUCTION DES ENDOMORPHISMES

Exercice 11 —

Soit A une matrice non nulle fixée de $\mathcal{M}_n(\mathbb{R})$ telle que $\mathrm{Tr}(A) \neq 0$. On considère l'application f qui à $M \in \mathcal{M}_n(\mathbb{R})$ associe

$$f(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A,$$

où tr désigne la trace d'une matrice (somme des coefficients diagonaux). Soit F l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$, de trace nulle.

- 1. Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que A est vecteur propre de f associé à la valeur propre 0. Montrer que le sous-espace propres associé à la valeur propre 0 est de dimension 1.
- 3. Montrer que Im(f) = F. Quelle est la dimension de F?
- 4. Montrer que F est le sous-espace propre de f associé à la valeur propre $\mathrm{tr}(A)$.
- 5. En déduire que f est diagonalisable, et que c'est la composée de la projection sur F parallèlement à la droite engendrée par A avec l'homothétie de rapport $\operatorname{tr}(A)$.

- Exercice 12

Soit E l'espace vectoriel des applications définies de \mathbb{R}_+^* dans \mathbb{R} . Pour tout $n \in \mathbb{N}^*$, on considère l'application :

$$f_n: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \sqrt[n]{x}$$

- 1. Déterminer une relation entre f_n et f'_n .
- 2. Si $n \in \mathbb{N}^*$, montrer que la famille $S = \{f_1, f_2, ..., f_n\}$ est une famille libre de E.

— Exercice 13 —

Soit $E = l^{\infty}(\mathbb{R})$ l'espace vectoriel des suites réelles bornées et $\Delta: E \to E$ l'endomorphisme définie par :

$$\triangle(u)(n) = u(n+1) - u(n).$$

Déterminer les valeurs propres de \triangle .

Exercice 14

Soient A et B deux polynômes de degré inférieure ou égal à n ($n \in \mathbb{N}^*$) avec A de degré n à racines simples $(\alpha_i)_{1 \leq i \leq n}$. Étudier la diagonalisabilité de l'endomorphisme de $\mathbb{C}_n[X]$ suivant :

$$P \longmapsto R$$
,

où *R* est le reste de la division euclidienne de *PB* par *A*.

Exercice 15

Diagonaliser dans $\mathcal{M}_n(\mathbb{C})$, en donnant la matrice de passage, les matrices suivantes.

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

— Exercice 16 —

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E diagonalisable. Montrer que $E=\operatorname{Ker} f\oplus\operatorname{Im} f.$

Exercice 17

Soit
$$A = \begin{pmatrix} 7 & 3 & -4 \\ -6 & -2 & 5 \\ 4 & 2 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
. et u l'endomorphisme canoni que mont associé

phisme canoniquement associé.

- 1. Déterminer les droites stables par *u. u* est-il diagonalisable?
- 2. Montrer qu'il n'y a que deux plans stables, préciser une base pour chacun.

Exercice 18 -

Etant donné $n \in \mathbb{N}^*$, E un espace vectoriel de dimension n sur \mathbb{R} et f un endomorphisme non nul de E, on suppose qu'il existe $p \in \mathbb{N}^*$ tel que $f^p = 0$.

- 1. Montrer que *f* n'est pas injectif.
- 2. Déterminer l'ensemble des valeurs propres de f.
- 3. L'endomorphisme f est-il diagonalisable?

- Exercice 19

Soit *A* la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par

$$A = \left(\begin{array}{rrr} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{array}\right)$$

- 1. Déterminer les valeurs propres réelles de *A*.
- 2. a) Déterminer une base de chaque sous-espace propre de *A*.
 - b) La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?

Exercice 20 —

Soit a un réel non nul et A la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 1 & a & a^2 \\ \frac{1}{a} & 1 & a \\ \frac{1}{a^2} & \frac{1}{a} & 1 \end{pmatrix}$$

- 1. Déterminer une relation entre A et A^2 .
- 2. En déduire les valeurs et les sous-espaces propres de *A*.
- 3. Vérifier que A est diagonalisable.

Exercice 21

On note E l'ensemble des applications de $\mathbb R$ dans $\mathbb R$ de la forme

$$x \longmapsto a + b \cos x + c \sin x + d \cos(2x) + e \sin(2x)$$

avec *a*, *b*, *c*, *d*, *e* des réels.

1. Montrer que E est un espace vectoriel sur $\mathbb R$ et déterminer sa dimension.

2. On définit l'application φ qui à tout P de E associe l'application de $\mathbb R$ dans $\mathbb R$

$$\varphi(P): x \longmapsto \int_0^{\pi} \cos(x+t)P(t)dt.$$

- a) Montrer que φ est un endomorphisme de E.
- b) Déterminer les images par φ des applications $x \longmapsto \cos x$ et $x \longmapsto \sin(x)$. Quel est le rang de φ ?
- c) L'endomorphisme φ de E est-il diagonalisable?

- Exercice 22

L'objectif de cet exercice est de résoudre dans $\mathcal{M}_3(\mathbb{R})$ l'équation

(1)
$$X^3 + X = 0$$
.

Soit *A* une matrice non nulle satisfaisant la relation (1).

- 1. Montrer que $\mathbb{R}^3 = \operatorname{Ker} A \oplus \operatorname{Ker} (A^2 + I_3)$.
- 2. Montrer que si x n'appartient pas à Ker A, alors (x, Ax) est libre.
- 3. Déterminer le polynôme minimal de *A*.
- 4. Montrer que Ker *A* est de dimension 1. En déduire que

A est semblable à la matrice
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercice 23

Soit $n \in \mathbb{N}^*$ et A une matrice carrée de taille n à coefficients dans \mathbb{C} .

- 1. Montrer que si λ est une valeur propre de A, alors λ^3 est valeur propre de A^3 .
- 2. a) Soit j le nombre complexe défini par $j=e^{\frac{2i\pi}{3}}$. Vérifier que, pour tout $\lambda\in\mathbb{C}$

$$A^{3} - \lambda^{3}I = (A - \lambda I)(A - \lambda jI)(A - \lambda j^{2}I).$$

b) En déduire que, si μ est une valeur propre de A^3 , il existe une valeur propre λ_0 de A telle que $\lambda_0^3 = \mu$.

Exercice 24

Soit r endomorphismes d'un espace vectoriel complexe de dimension finie non nulle qui commutent deux à deux . Montrer qu'ils possèdent un vecteur propre commun.

Exercice 25

Soit $n \in \mathbb{N}^* \setminus \{1\}$. Soit L une matrice ligne non nulle de $\mathcal{M}_{1,n}(\mathbb{R})$ et C une matrice colonne non nulle de $\mathcal{M}_{n,1}(\mathbb{R})$. On note A la matrice A = CL.

- 1. a) Exprimer le réel *LC* en fonction des coefficients de *L* et de *C*.
 - b) Déterminer le rang de la matrice *A*.
 - c) Calculer le produit AC en fonction de LC et C.
- 2. Déterminer une relation entre A^2 et A. En déduire les valeurs propres de A.
- 3. a) Montrer que $A + I_n$ est inversible si, et seulement si, LC + 1 est non nul.
 - b) Dans le cas où LC + 1 est non nul, déterminer l'inverse de $A + I_n$.

PROF: MED TARQI

– Exercice 26 –

Soit f un endomorphisme de \mathbb{C}^n de rang 1 ($n \ge 1$).

- 1. Montrer que tout vecteur non nul de l'image de *f* est un vecteur propre de f.
- 2. Montrer que f est diagonalisable si, et seulement si, $f^2 \neq 0$.

Exercice 27

Soit n un entier supérieur ou égal à 3. On considère A = $(a_1, a_2, ..., a_{n-1})$ et $B = (b_1, b_2, ..., b_{n-1})$ deux éléments non nuls de \mathbb{C}^{n-1} . On note $S = \sum_{i=1}^{n-1} a_i b_i$. Soit f l'endomorphisme de \mathbb{C}^n dont la matrice dans la base

canonique est

$$M = \begin{pmatrix} 0 & \dots & \dots & 0 & b_1 \\ \vdots & & & \vdots & b_2 \\ \vdots & & & \vdots & \vdots \\ 0 & \dots & \dots & 0 & b_{n-1} \\ a_1 & a_2 & \dots & a_{n-1} & 0 \end{pmatrix}$$

- 1. Déterminer le rang de *f* .
- 2. a) Déterminer les valeurs propres de *f* .
 - b) Montrer que f est diagonalisable si, et seulement si, S est non nul.

Exercice 28 —

Soit $n \in \mathbb{N}^*$ et A, B deux matrices de $\mathcal{M}_n(\mathbb{R})$. On considère l'application ϕ de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ définie par

$$\forall X \in \mathcal{M}_n(\mathbb{R}), \ \phi(X) = AX - XB.$$

On désigne par α (resp. β) une valeur propre de la matrice A (resp. B).

- 1. Vérifier que ϕ est endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer qu'il existe des matrices colonnes non nulles C et *D* telles que $AC = \alpha C$ et ${}^tBD = \beta D$.
- 3. Calculer $\phi(C^tD)$ en fonction de C, D et β .
- 4. En déduire que $\alpha \beta$ est valeur propre de l'endomorphisme ϕ .