ANNÉE SCOLAIRE 13/14 PROF: M.TARQI.△

Série *n*°1

Exercice 1

Déterminer toutes les normes sur R.

Exercice 2

- 1. Montrer que les applications suivantes sont des normes sur \mathbb{R}^n , $x = (x_1,...,x_n) \mapsto N(x) = \sum_{k=1}^n k|x_k|$ et $x = (x_1,...,x_n) \mapsto N'(x) = \sum_{k=1}^n \frac{|x_k|}{k}$.
- 2. Montrer que N, N' et $\|.\|_1$ sont équivalentes et représenter dans le cas n=2 les boules unités correspondantes.

Exercice 3

- 1. Soient $a_1,...,a_n$ des réels et $N:\mathbb{K}^n\to\mathbb{R}$ l'application définie par : $N(x_1,...,x_n)=a_1|x_1|+...+a_n|x_n|$. A quelle condition sur les $a_1,...,a_n$, l'application N définit-elle une norme sur \mathbb{K}^n ?
- 2. Soient $f_1,...,f_n$ des applications continues sur [0,1] dans \mathbb{R} . Considérons l'application $N:\mathbb{R}^n\to\mathbb{R}$ définie par

$$N(x_1,...,x_n) = ||x_1f_1 + ... + x_nf_n||_{\infty}.$$

A quelle condition sur les applications $f_1, ..., f_n$, l'application N définit-elle une norme sur \mathbb{R}^n ?

Exercice 4

Montrer que l'application $N:\mathbb{R}^2 \to \mathbb{R}$ définie par $N(x,y)=\sup_{t\in [0,1]}|x+ty|$ est une

norme sur \mathbb{R}^2 . Représenter la boule unité fermée pour cette norme et comparer celle-ci à la la norme $\|.\|_{\infty}$.

Exercice 5

Soient l'espace vectoriel $E = \{f \in \mathscr{C}^1([0,1],\mathbb{R})/f(0) = 0\}$ et N l'application définie sur E par $N(f) = \|3f + f'\|_{\infty}$.

- 1. Montrer que (E, N) est un espace vectoriel normé puis qu'il existe un réel $\alpha > 0$ tel que $||f||_{\infty} \le \alpha N(f)$ pour tout $f \in E$.
- 2. Les normes $\|.\|_{\infty}$ et N sont-elles équivalentes?

Exercice 6

Soit E un \mathbb{K} -espace vectoriel $, (F, \|.\|F)$ un evn et f une application lineaire de E dans F .On considère l'application

$$N: \begin{cases} E \to \mathbb{R} \\ x \longmapsto \|f(x)\|_F \end{cases}$$

- 1. Montrer que N est une semi norme sur E
- 2. A quelle condition nécéssaire et suffisante sur f, N est une norme sur E

Exercice 7

On considère le sous-ensemble suivant de \mathbb{R}^2 : $D = \{(x,y) \in \mathbb{R}^2 / |x| \le |y|, x^2 + y^2 < 1\} \subset \mathbb{R}^2$.

- 1. Dessiner *D*. Montrer que *D* n'est pas ouvert.
- 2. Déterminer \overline{D} , l'adhérence de D. On justifiera brièvement sa réponse, en s'aidant d'un dessin.

Exercice 8

1. On pose $l^{\infty} = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{C}^n / (|u_n|)_{n \in \mathbb{N}} \text{ est bornée} \}$. On pose $N(u) = \sum_{n=0}^{\infty} \frac{|u_n|}{4^n} \text{ et } ||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$.

ESPACES VECTORIELS NORMÉS (1)

Centre Ibn Abdoune des Classes Préparatoires aux Grandes Écoles. Khouribga

ANNÉE SCOLAIRE 13/14 PROF: M.TARQI. ዾ

- a. Montrer que N et $\|.\|_{\infty}$ sont des normes dans l^{∞} .
- b. Les normes N et $\|.\|_{\infty}$ sont-elles équivalentes?
- 2. Montrer que l'espace vectoriel l^{∞} muni de la norme sup est un espace vectoriel normé complet.

Exercice 9

1. Soit $E = \mathbb{R}[X]$ muni de la norme N définie par : $N(P) = \max_{k \in [0,p]} |a_k|$ si $P = \sum_{k=0}^p a_k X^k$. On note $P_n = 1 + \frac{X}{2} + \frac{X^2}{3} + \dots + \frac{X^n}{n+1}$.

Montrer que la suite $(P_n)_{n\in\mathbb{N}}$ est de Cauchy, mais ne converge pas.

2. On considère l'espace vectoriel $E=\mathscr{C}([0,1],\mathbb{R})$ des fonctions continues sur [0,1] à valeurs dans \mathbb{R} muni de la norme dite de la convergence en moyenne : $\forall f \in E, \ \|f\|_1 = \int_0^1 |f(t)| \mathrm{d}t$. Considérons la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$ définies par :

$$f_n: x \mapsto \begin{cases} n(\sqrt{n}-1)x & \text{si } x \in [0,\frac{1}{n}[\\ \frac{1}{\sqrt{x}}-1 & \text{si } x \in [\frac{1}{n},1] \end{cases}$$

- a. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ est de Cauchy dans $(E, \|.\|_1)$.
- b. En déduire que l'espace vectoriel $(E, ||.||_1)$ n'est pas complet.

Exercice 10

Montrer que toute fermé peut s'écrire comme intersection d'une suite décroissante d'ouverts.

Exercice 11

On désigne par p_1 et p_2 les projections de \mathbb{R}^2 définies par $p_1(x,y) = x$ et $p_2(x,y) = y$.

- 1. Soit *O* un ouvert de \mathbb{R}^2 . Montrer que $p_1(O)$ et $p_2(O)$ sont des ouverts de \mathbb{R} .
- 2. Soit $H = \{(x,y) \in \mathbb{R}^2 / xy = 1\}$. Montrer que H est un fermé de \mathbb{R}^2 et que $p_1(H)$ et $p_2(H)$ ne sont pas des fermés de \mathbb{R} .
- 3. Montrer que si F est un fermé tel que $p_1(F)$ est borné, alors $p_2(F)$ est fermé.

Exercice 12

Pour tout *A* partie de \mathbb{R} non vide et tout $x \in \mathbb{R}$, on pose :

$$d(x, A) = \inf\{|x - a|/a \in A\}$$

(distance de x à A).

- 1. Donner une interpretation géométrique de d(x, A) sur la droite réelle.
- 2. Examiner les cas ou A = [0, 1[et $x = 1, 2, \frac{1}{2}$ ou -3.
- 3. On revient au cas general. Justifier l'existence de d(x, A).
- 4. La borne inférieure d(x, A) est-elle un plus petit element? Illustrer par divers exemples.
- 5. Calculer $d(x, \mathbb{R} \setminus \mathbb{Q})$ pour tout $x \in \mathbb{R}$. Même question avec $d(x, \mathbb{Q})$.
- 6. Soit $(x,y) \in \mathbb{R}^2$. Montrer que $|d(x,A) d(y,A)| \le |x-y|$.

Exercice 13

Soit $E = \mathcal{B}([-1,1],\mathbb{R})$ l'espace vectoriel des fonctions bornées de [-1,1] vers \mathbb{R} , muni de la norme de la convergence uniforme $\|.\|_{\infty}$. Déterminer la distance de la fonction

$$f: x \mapsto \begin{cases} 1 & \text{si } x \in]0, 1] \\ 0 & \text{si } x = 0 \\ -1 & \text{si } x \in [-1, 0[$$

au sous-espace vectoriel $F = \mathscr{C}([-1,1],\mathbb{R})$ formé des fonctions continues.

• • • • • • • • • • •