Exercice 1

Soit (f_n) une suite de fonctions qui converge simplement vers une fonction f sur un intervalle I. Dire si les assertions suivantes sont vraies ou fausses :

- 1. Si les f_n sont croissantes, alors f aussi.
- 2. Si les f_n sont strictement croissantes, alors f aussi.
- 3. Si les f_n sont périodiques, alors f aussi.
- 4. Si les f_n sont continues en a, alors f aussi.

Reprendre l'exercice en remplaçant la convergence simple par la convergence uniforme.

Exercice 2

Étudier la convergence simple et la convergence uniforme des suites de fonctions (f_n) suivantes :

- 1. $f_n(x) = 1 + x + \dots + x^{n-1} \text{ sur }] 1, 1[$, puis sur [-a, a] avec $0 \le a < 1$.
- 2. $f_n(x) = nx^n \ln(x), f_n(0) = 0, \text{ sur } [0, 1].$
- 3. $f_n(x) = e^{-nx} \sin(2nx) \text{ sur } \mathbb{R}^+ \text{ puis sur } [a, \infty[, \text{ avec } a > 0.$

Exercice 3

Soit $a \ge 0$. On définit la suite de fonctions (f_n) sur [0,1] par $f_n(x) = n^a x^n (1-x)$. Montrer que la suite (f_n) converge simplement vers 0, mais que la convergence est uniforme si et seulement si a < 1.

Exercice 4

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définies sur [0,1] par $f_n(x)=\frac{2^nx}{1+2^nnx^2}$.

- 1. Étudier la convergence simple de cette suite de fonctions.
- 2. Calculer $I_n = \int_0^1 f_n(t) dt$ et $\lim_{n \to \infty} I_n$. En déduire que la suite (f_n) n'est pas uniformément convergente sur [0,1].

3. Donner une démonstration directe du fait que la suite (f_n) ne converge pas uniformément sur [0,1].

Exercice 5

On définit une suite de fonctions $f_n:[0,1]\to\mathbb{R}$ par $f_0=0$ et, pour tout $n\in\mathbb{N}$ et tout $x\in I=[0,1]$,

$$f_{n+1}(x) = f_n(x) + \frac{1}{2} \left(x - (f_n(x))^2 \right).$$

- 1. Montrer que la suite (f_n) converge simplement sur I vers la fonction $x \mapsto \sqrt{x}$.
- 2. Démontrer que, pour tout entier $n \ge 1$, $0 \le \sqrt{x} f_{n+1}(x) = \sqrt{x}(1 \sqrt{x})^n$.
- 3. En déduire que la convergence est uniforme sur *I*.

Exercice 6

Pour $x \ge 0$, on pose $u_n(x) = \frac{x}{n^2 + x^2}$.

- 1. Montrer que la série $\sum_{n=1}^{\infty} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n=1}^{\infty} u_n$ converge uniformémement sur tout intervalle [0, A], avec A > 0.
- 3. Vérifier que, pour tout $n \in \mathbb{N}$, $\sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2} \ge \frac{1}{5}$.
- 4. En déduire que la série $\sum_{n\geq 1}u_n$ ne converge pas uniformément sur \mathbb{R}_+ .
- 5. Montrer que la série $\sum_{n=1}^{\infty} (-1)^n u_n$ converge uniformément sur \mathbb{R}_+ .
- 6. Montrer que la série $\sum_{n=1}^{\infty} (-1)^n u_n$ converge normalement sur tout intervalle [0,A], avec A>0.

7. Montrer que la série $\sum_{n=1}^{\infty} (-1)^n u_n$ ne convergence pas normalement sur \mathbb{R}_+ .

Exercice 7

Pour $x \in I = [0,1]$, $a \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $u_n(x) = n^a x^n (1-x)$.

- 1. Étudier la convergence simple sur I de la série de terme général u_n . On notera dans la suite S la somme de la série.
- 2. Étudier la convergence normale sur I de la série de terme général u_n .
- 3. On suppose dans cette question que a = 0. Calculer S sur [0,1[. En déduire que la convergence n'est pas uniforme sur [0,1].
- 4. On suppose a > 0. Démontrer que la convergence n'est pas uniforme sur I.

Exercice

Soit $u_n(x) = (-1)^n \ln \left(1 + \frac{x}{n(1+x)} \right)$ défini pour $x \ge 0$ et $n \ge 1$.

- 1. Montrer que la série $\sum_{n\geq 1} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n\geq 1} u_n$ converge uniformément sur \mathbb{R}_+ .
- 3. La convergence est-elle normale sur \mathbb{R}_+ ?

Exercice 9

Soit $g:[0,\infty[\to\mathbb{R}$ une fonction continue et bornée telle que g(0)=0. On considère la suite de fonctions définie sur $[0,\infty[$ par $f_n(x)=g(x)e^{-nx}$.

- 1. a. Étudier la convergence simple de la suite.
 - b. Montrer que la suite converge uniformément sur tout intervalle $[a, \infty[$, avec a > 0.
 - c. On fixe $\varepsilon > 0$. Montrer que l'on peut choisir a > 0 tel que $|f_n(x)| \le \varepsilon$ pour tout $x \in [0, a]$ et pour tout $n \ge 1$. En déduire que la suite converge uniformément sur $[0, \infty[$.

- 2. On considère la série de fonctions $\sum_{n\geq 0} g(x)e^{-nx}$.
 - a. Démontrer qu'elle converge simplement sur $[0, \infty[$ et normalement sur tout intervalle $[a, \infty[$ avec a > 0.
 - b. Démontrer l'équivalence entre les deux propositions suivantes :
 - i. la courbe représentative de g est tangente \tilde{A} ă l'axe des abscisses \tilde{A} ă l'origine;
 - ii. la série de fonctions $\sum_{n\geq 0} g(x)e^{-nx}$ converge uniformément sur $[0,\infty[$.

Exercice 10

On considère la série de fonctions $S(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{x+n}$.

- 1. Prouver que *S* est définie sur $I =]-1, \infty[$.
- 2. Prouver que *S* est continue sur *I*.
- 3. Prouver que *S* est dérivable sur *I*, calculer sa dérivée et en déduire que *S* est croissante sur *I*.
- 4. Quelle est la limite de S en −1? en ∞?

Exercice 1

Soit $f_n: [0,1] \to \mathbb{R}$ définie par $f_n(x) = n^2 x (1 - nx)$ si $x \in \left[0, \frac{1}{n}\right]$ et $f_n(x) = 0$ sinon.

- 1. Étudier la limite simple de la suite $(f_n)_{n \in \mathbb{N}}$.
- 2. Calculer $\int_0^1 f_n(t)dt$. Y a-t-il convergence uniforme de la suite de fonction $(f_n)_{n\in\mathbb{N}}$?
- 3. Étudier la convergence uniforme sur [a, 1] avec a > 0.

Exercice 12

2/3

Soit f la fonction déterminée par $f(x) = \sum_{n=1}^{\infty} u_n(x)$ avec $u_n(x) = \frac{1}{n!} \arccos(\cos nx)$.

- 1. Montrer que f est définie et continue sur $]-\infty,+\infty[$. Calculer $f(\pi)$ et $f\left(\frac{\pi}{2}\right)$.
- 2. Montrer que, p étant un entier positif,

$$\forall x \in \left]0, \frac{\pi}{p}\right], \ 0 < ex - f(x) < \frac{(p+1)!x}{pp!}.$$

3. La fonction f est-elle dérivable au point x = 0?

Exercice 13

On appelle fonction ζ de Riemann la fonction de la variable $s\in\mathbb{R}$ définie par la formule

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}.$$

- 1. Donner le domaine de définition de ζ et démontrer qu'elle est strictement décroissante sur celui-ci.
- 2. Prouver que ζ est continue sur son domaine de définition.
- 3. Déterminer $\lim_{s \to \infty} \zeta(s)$.
- 4. Montrer que pour tout entier $k \ge 1$ et tout s > 0, on a $\frac{1}{(k+1)^s} \le \int_k^{k+1} \frac{dx}{x^s} \le \frac{1}{k^s}$. En déduire que $\zeta(s) \sim_{1^+} \frac{1}{s-1}$.
- 5. Démontrer que ζ est convexe.
- 6. Tracer la courbe représentative de ζ.

Exercice 14

Soit $(f_n)_{n\geqslant 1}$ la suite de fonctions définies sur [-1,1] par $f_n(t)=\frac{1}{n}t^n\sin nt$.

- 1. Montrer que la série $\sum f_n$ converge simplement sur] 1,1[.
- 2. Soit $a \in]0,1[$.
 - a. Montrer que la série $\sum f'_n$ converge normalement sur [-a, a].
 - b. En déduire que la fonction $f = \sum_{n=1}^{\infty} f_n$ est de classe C^1 sur]-1,1[et montrer que, pour $x \in]-1,1[$,

$$f'(x) = \frac{\sin x + x \cos x - x^2}{1 - 2x \cos x + x^2}.$$

- c. Montrer que $f(t) = \arctan \frac{t \sin t}{1 t \cos t}$ pour $t \in]-1,1[$.
- 3. On pose pour tout $n \in \mathbb{N}^*$ et $t \in [-1,1]$, $A_n(t) = \sum_{k=1}^n t^k \sin k t$.
 - a. Montrer qu'il existe M>0 tel que pour tout $n\in\mathbb{N}^*$ et $t\in[-1,1]$ on ait $|A_n(t)|\leqslant M$.
 - b. Montrer en écrivant $t^k \sin(kt) = A_k(t) A_{k-1}(t)$ que

$$\sum_{k=1}^{n} \frac{t^{k} \sin k t}{k} = \sum_{k=1}^{n-1} \frac{A_{k}(t)}{k(k+1)} + \frac{A_{n}(t)}{n}.$$

- c. En déduire que la série $\sum_{n} f_n$ converge simplement sur [-1,1] et que $f(t) = \sum_{k=1}^{\infty} \frac{A_k(t)}{k(k+1)}$ sur [-1,1]. Montrer que f est continue sur cet intervalle.
- d. En déduire les valeurs de $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ et de $\sum_{n=1}^{\infty} (-1)^n \frac{\sin n}{n}$.

Exercice 15

On munit l'espace $E = \mathscr{C}([0,1],\mathbb{R})$ de la norme de la convergence uniforme. On pose

$$T: E \longrightarrow E$$

$$f \longmapsto T(f): x \longmapsto \int_0^x f(t)dt$$

- 1. Calculer T^n avec un seul symbole d'intégration.
- 2. Calculer la norme subordonnée $||T^n||$ de T^n .
- 3. Montrer que la série $\sum_{n\in\mathbb{N}}T^n$ converge.
- 4. On pose $\Phi(f)(x) = \sum_{n=0}^{\infty} T^n(f)(x)$ pour tout $f \in E$ et pour tout $x \in [0,1]$. Montrer que $(Id_E T)\Phi(f) = f$.

• • • • • • • • • •