Exercice 1

Soient E et F deux espaces vectoriels normés et $f: E \to F$ une application. Montrer que f est continue si, et seulement si, pour toute partie A de E, $f(\overline{A}) \subset \overline{f(A)}$.

Exercice 2

Soient E et F deux \mathbb{R} -espaces vectoriels normés et f une application de E dans F vérifiant : $\forall (x,y) \in E^2$, f(x+y) = f(x) + f(y) et f bornée sur la boule unité. Montrer que f est une application linéaire.

Exercice 3

Soit K une partie convexe de \mathbb{R}^2 . Montrer qu'il existe un triangle inclus dans K d'aire maximale.

Exercice ·

Soit H un hyperplan d'un espace vectoriel normé E tel que $H = \ker f$ où f est une forme linéaire non nulle.

Montrer l'équivalence : *f* continue si et seulement si *H* non dense dans *E*.

Exercice 5

Soit $f \in \mathcal{L}(E, F)$, on suppose que, pour toute suite $(x_n)_{n \in \mathbb{N}}$ de E tendant vers 0, la suite $(f(x_n))_{n \in \mathbb{N}}$ est bornée.

Montrer que f est continue.

Exercice 6

Soit E un espace vectoriel normé et f une forme linéaire continue non nulle sur E, on pose $H = \ker f$. Montrer que $d(x, H) = \frac{|f(x)|}{\|f\|}$.

Exercice 7

Soit E un espace vectoriel normé, A un compact de E et f une application de A dans A telle que :

$$\forall (x,y) \in A^2, (x \neq y) \ d(f(x), f(y) < d(x,y).$$

Prouver que f a un point fixe (c'est-à-dire il existe un élément $z \in A$ tel que f(z) = z). (procéder par l'absurde en supposant que $c = \inf\{d(x, f(x)), x \in A\} > 0$).

Exercice 8

Soit E un espace vectoriel normé de dimension finie, F un sous-espace vectoriel de E; on pose d(x, F) = a.

Montrer qu'il existe $y \in F$ tel que d(x, F) = d(x, y).

Exercice 9

Soient E et F deux espaces vectoriels de dimensions finies, $(e_i)_{1 \le i \le n}$ et $(f_j)_{1 \le j \le p}$ des bases de E et F respectivement. Soit A la matrice de $f \in \mathcal{L}(E,F)$, calculer ||f|| dans les cas suivants :

- 1. E et F munis de la norme $1: ||x||_1 = \sum_{i=1}^n |x_i|$ (sur E) et $||y||_1 = \sum_{i=1}^p |y_i|$ (sur F).
- 2. E et F munis de la norme $\infty: ||x||_1 = \sup_{i \in [\![1,n]\!]} |x_i|$ (sur E) et $||y||_1 = \sup_{j \in [\![1,n]\!]} |y_i|$ (sur F).

Centre Ibn Abdoune des Classes Préparatoires aux Grandes Écoles. Khouribga

PROF :

Exercice 10

Soit $E=\mathscr{C}([0,1],\mathbb{R})$ l'espace des fonctions continues sur [0,1] dans \mathbb{R} muni de la norme $\|.\|_{\infty}$, et u l'endomorphisme qui envoie $f\in E$ sur la fonction $u(f):x\mapsto f(x)-f(0)$.

- 1. Montrer que l'endomorphisme u est continu sur $(E, \|.\|_{\infty})$ et calculer sa norme.
- 2. On définit la norme $\|.\|_1: f \mapsto \int_0^1 |f(t)| dt$. Montrer que l'endomorphisme u n'est pas continu sur $(E, \|.\|_1)$.

Exercice 11

Soit E un espace vectoriel normé de dimension finie et u un endomorphisme de E vérifiant

$$\forall x \in E, \ \|u(x)\| \le \|x\|.$$

Montrer que $ker(u - Id_E)$ et $Im(u - Id_E)$ sont supplémentaires.

Exercice 12

Soient $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme de la convergence uniforme. Soit T l'application de E de E définie par : E

$$\forall f \in E, \forall x \in [0,1], \ T(f)(x) = \int_0^x f(t)dt.$$

Montrer que T est linéaire continue, et calculer ||T||.

Même question pour l'application

$$S(f) = \int_0^1 \varphi(t) f(t) dt$$

où $\varphi \in E$.

Exercice 13

Soit *A* une partie compacte d'un espace normé $(E, \|.\|)$ et $f: A \to A$ telle que : $\forall x, y \in A, x \neq y \Longrightarrow \|f(x) - f(y)\| < \|x - y\|.$

- 1. Montrer que f n'est pas nécessairement une contraction.
- 2. Montrer que f possède un unique point fixe (on pourra considérer $\varphi(x) = \|x f(x)\|$).
- 3. Montrer que, $\forall a \in A$ la suite $(f^{(n)}(a))_{n \in \mathbb{N}}$ converge vers ce point fixe.
- 4. Si A est un convexe compact d'un espace vectoriel normé et f vérifie $\forall x,y\in A, \ \|f(x)-f(y)\|\leq \|x-y\|,$ montrer que f possède au moins un point fixe, et que l'hypothèse de convexité est indispensable.

••••••