Exercice 1

Soit *p* un entier premier.

- 1. Montrer que p divise \mathbb{C}_p^q avec $1 \le q \le p-1$. En déduire que dans l'anneau $\mathbb{Z}/p\mathbb{Z}$ avec p premier $(a+b)^p = a^p + b^p$ puis que $(a-b)^p = a^p b^p$ et enfin que $(a_1 + a_2 + ... + a_k)^p = a_1^p + a_2^p + ... + a_k^p$.
- 2. En considérant le corps $\mathbb{Z}/_{vZ}$, montrer que $k^p \equiv k[p]$ (petit théorème de FERMAT).

Exercice 2

1. Soient a et b deux entiers naturels non nuls premiers entre eux supérieurs ou égales à 2. Montrer que

 $\forall (u_0,v_0) \in \mathbb{N}^2$, $u_0a-v_0b=1$, avec $u_0 < b$ et $v_0 < a$ et exprimer en fonction de u_0 , v_0 , a et b tous les couples $(u,v) \in \mathbb{Z}$ solutions de ua-vb=1.

2. Déterminer deux entiers u et v vérifiant 47u + 11v = 1.

Exercice 3

Soient m et n deux entiers premiers entre eux.

- 1. Montrer que $\mathbb{Z}/_{mn\mathbb{Z}}$ et $\mathbb{Z}/_{m\mathbb{Z}} \times \mathbb{Z}/_{n\mathbb{Z}}$ sont isomoprphes. En déduire que : $\varphi(mn) = \varphi(m)\varphi(n)$. $(\varphi(n) = \text{card}\{k \ / \ 1 \le k \le n \text{ et } n \land k = 1\})$
- 2. Soit p un nombre premier, calculer $\varphi(p^k)$ pour $k \in \mathbb{N}^*$, en déduire $\varphi(n)$ pour tout $n \in \mathbb{N}^*$.
- 3. Trouver toutes les solutions des systèmes suivantes :

$$\left\{ \begin{array}{l} x \equiv 1 & [3] \\ x \equiv 3 & [5] \\ x \equiv 4 & [7] \\ x \equiv 2 & [11] \end{array} \right. \left\{ \begin{array}{l} x \equiv 998 & [2011] \\ x \equiv 999 & [2012] \end{array} \right.$$

Exercice 4

Soit $f: \mathbb{C} \to \mathbb{C}$ un endomorphisme de l'anneau $(\mathbb{C}, +, .)$ tel que $\forall x \in \mathbb{R}$ f(x) = x. Montrer que f est l'identité ou la conjugaison complexe.

Exercice 5

Soit \mathbb{K} un corps commutatif fini. Calculer $\prod_{x \in \mathbb{K}^*} x$.

Exercice 6

Résoudre les équations suivantes :

a) 3x + 5 = 0 dans $\mathbb{Z}/_{10\mathbb{Z}}$ b) $x^2 = 1$ dans $\mathbb{Z}/_{8\mathbb{Z}}$ c) $x^2 + 2x + 2 = 0$ dans $\mathbb{Z}/_{5\mathbb{Z}}$

Exercice 7

Résoudre les systèmes suivantes :

a)
$$\begin{cases} x \equiv 1[6] \\ x \equiv 2[7] \end{cases}$$
 b)
$$\begin{cases} 3x \equiv 2[5] \\ 5x \equiv 1[6] \end{cases}$$
 c)
$$\begin{cases} x + y \equiv 4[11] \\ xy \equiv 10[11] \end{cases}$$

Exercice 8

Soit *A* l'ensemble défini par :

$$A = \{z \in \mathbb{C}/\exists (a,b) \in \mathbb{Z}^2 \text{ tel que } z = a + jb\}$$

avec $j = e^{\frac{2\pi i}{3}}$

- 1. Montrer que A muni de l'addition et de la multiplication dans $\mathbb C$ est un anneau commutatif.
- 2. Montrer que l'ensemble des éléments inversibles de A est l'ensemble U défini par : $U=\{z\in A/|z|=1\}$

Exercice 9

Soit $\mathbb K$ un corps commutatif.

ARITHMÉTIQUE ENTIERS ET POLYNÔMES PROF: M.TARQIÆ ANNÉE SOM. TARGOLÆ

Centre Ibn Abdoune des Classes Préparatoires aux Grandes Écoles. Khouribga

- 1. Montrer que ($\mathbb{K} \times \mathbb{K}$, +, ·) n'est pas un corps.
- 2. Montrer que le diagonale de $\mathbb{K} \times \mathbb{K}$ est un corps isomorphe à \mathbb{K} .

Exercice 10

On considère \mathbb{R} comme espace vectoriel sur \mathbb{Q} . Soit $\alpha = \sqrt[3]{2}$ ($\alpha \notin \mathbb{Q}$).

- 1. Montrer que les nombres $1, \alpha, \alpha^2$ sont linéairement indépendants. En utilisant $\alpha^3 = 2$, on montrera que toute relation de dépendance linéaire entrainerait que α soit rationnel.
- 2. Montrer que le sous-espace vectoriel L de $\mathbb R$ engendré par 1, α , α^2 est un sous-anneau intègre de $\mathbb R$.
- 3. Soit $x \in L^*$. Montrer que l'application de L dans lui même qui à y associé xy est une bijection. En déduire que L est un corps. Donner l'expression de l'inverse de $x \neq 0$

Exercice 1

Déterminer le reste de la division euclidienne du polynôme $X^n + X + b$ par $(X - a)^2$.

Exercice 12

Décomposer le polynôme $P=X^5-13X^4+67X^3-171X^2+216X-108$ sachant qu'il admet des racines multiples.

Exercice 13

Soit a et b deux éléments distincts de \mathbb{K} .

Montrer que la suite des polynômes $E_p = (X - a)^{n-p}(X - b)^p$ pour p = 0, 1, ..., n est une base de l'espace des polynômes de degré inférieur ou égal à n.

Exercice 14

Calculer la somme $S_4 = \sum_{i=1}^5 x_i^4$ des puissances quatrièmes des racines de l'équation :

$$X^5 + pX^3 + qX^2 + r = 0.$$

Exercice 15

Soit $P \in \mathbb{R}[X]$ et $\alpha + \beta X$ le reste de la division euclidienne par $X^2 + 1$, φ l'application de $\mathbb{R}[X]$ dans \mathbb{R}^2 définie par $\varphi(P) = (\alpha, \beta)$.

Montrer que l'on peut définir une addition et une multiplication sur \mathbb{R}^2 de manière que φ soit un hommorphisme d'anneau et que l'anneau image est un corps isomorphe au corps \mathbb{C} . **Application :**

Montrer que $P(X) = (\cos(a) + X\sin(a))^n - (\cos(na) + X\sin(na))$ est divisible par $X^2 + 1$ $(n \in \mathbb{N}^*)$.

Exercice 16

Soit $n \in \mathbb{N}^*$, $P \in \mathbb{R}_{n-1}[X]$, Montrer que:

$$P(0) = \frac{1}{n} \sum_{\omega \in \Omega_n} P(\omega)$$

Où Ω_n désigne l'ensemble des racines $n^{i \`{e} m e}$ de l'unité dans $\mathbb C$.

Exercice 17

Soit $P = X^n - \alpha_1 X^{n-1} - ... - \alpha_n, \forall k \in [1, n], \alpha_k > 0$

- 1. Montrer qu'il existe un seul $\varrho > 0$ tel que $P(\varrho) = 0$.
- 2. Prouver que le module de toute racine de P est inférieure à ϱ et que si $\alpha_1 \neq 0$, le module de toute racine de P autre que ϱ est $< \varrho$.

• • • • • • • • •