Exercice 1

Soit $\sum_{n\in\mathbb{N}^*}a_nz^n$ une série entière de rayon de convergence R et $z_0\in\mathbb{C}$. On suppose que $\sum_{n\in\mathbb{N}^*}a_nz_0^n$ est semiconvergente. Déterminer R.

Exercice 2

Déterminer le rayon de convergence des séries entières $\sum_{n\in\mathbb{N}^*} d(n)x^n \text{ et } \sum_{n\in\mathbb{N}^*} s(n)x^n \text{ où } d(n) \text{ et } s(n) \text{ désignent respectivement le nombre de diviseurs supérieurs à 1 de l'entier } n \text{ et la somme de ceux-ci.}$

Exercice 3

Soit A une matrice carrée d'ordre n à coefficients complexes. Calculer le rayon de convergence de la série $\sum_{n\in\mathbb{N}}\operatorname{Tr}(A^n)z^n \text{ et calculer sa somme en fonction du polynôme caractéristique }\chi_A \text{ de }A.$

Exercice 4

- 1. Trouver l'ensemble de définition de la fonction $f: x \longmapsto \sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$.
- 2. Expliciter f(x) à l'aide des fonctions classiques.

Exercice 5

Étudier la série de terme général $u_n = \frac{(-1)^n}{2n+1} + \frac{(-1)^n}{2n+2}$ et calculer sa somme.

Exercice 6

EXTRAIT DE MINES-PONTS PSI 97

Soit $(a_n)_{n\geq 1}$ une suite de réels positifs telles que :

- $\sum_{n>1} a_n$ converge.
- $\bullet \quad \sum_{n=1}^{\infty} a_n = 1$

On définit alors la suite $(b_n)_{n\geq 1}$ par $b_1=a_1$ et $b_n=a_n+\sum_{k=1}^{n-1}a_kb_{n-k}$ pour $n\geq 2$. On note R_1 le rayon de

convergence de la série entière $\sum_{n\geq 1} a_n x^n$ et R_2 le rayon

de convergence de la série entière $\sum_{n>1} b_n x^n$.

On note $A: x \longmapsto A(x) = \sum_{n=1}^{\infty} a_n x^n$ et $B: x \longmapsto B(x) =$

$$\sum_{n=1}^{\infty} b_n x^n$$

- 1. Montrer que $R_1 \ge 1$
- 2. Montrer que A est définie et continue sur [-1,1]
- 3. a. Montrer que $0 \le b_n \le 1$ pour tout entier naturel supérieur ou égal à 1

- b. Que peut-on en déduire pour R_2 ?
- 4. Soit $x \in]-1,1[$. Montrer que B(x) = A(x) + A(x)B(x).
- 5. Montrer que $R_2 = 1$.

Exercice '

Donner une expression aussi simple que possible de la fonction $f(x) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + ... + \frac{1}{n}\right) x^n$.

Exercice 8

Montrer que $\int_0^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} x^n \right) dx = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}(n+1)}.$

Exercice

Pour tout $n \in \mathbb{N}$, on pose $a_n = \int_0^1 \left(\frac{1+t^2}{2}\right)^n dt$.

- 1. Montrer que $\lim_{n\to\infty}a_n=0$ et que la série $\sum_{n\in\mathbb{N}}(-1)^na_n$ converge, calculer sa somme.
- 2. Quel est le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}}a_nx^n$? Calculer $S(x)=\sum_{n=0}^\infty a_nx^n$.

Exercice 10

Pour tout n entier naturel non nul,on pose $u_n: t \to t^n \sin(nx)$ avec x un réel de $]0, \pi[$.

- 1. Étudier de la série de fonctions $\sum_{n=1}^{\infty} u_n(t)$.
- 2. Calculer la somme $S_n(t) = \sum_{p=1}^n t^{p-1} \sin(px)$, puis la limite notée S(t), de $S_n(t)$ pour n infini.
- 3. Calculer les intégrales sur [0,1], de S_n et de S.
- 4. En déduire que la série $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ converge de donner sa somme.

Exercice 11

Soit $f: x \to e^{x^2} \int_0^x e^{-t^2} dt$. On se propose de deux méthodes à étudier dans les questions 1 et 2.

- Montrer que f est développable en série entière sur R et déterminer son développement en série entière sur R en effectuant le produit de deux séries entières.
- 2. a. Montrer que f est solution sur \mathbb{R} de l'équation différentielle (E) suivante : $(E) \quad y'(x) 2xy(x) = 0.$
 - En déduire que f est développable en série entière sur R et déterminer son développement en série entière sur R.

Exercice 12

EXTRAIT DE CONCOURS E3A MP-PC 99

Le but de l'exercice est de montrer l'égalité $e^{-\sqrt{x}} = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (x-1)^n$ pour tout $x \in]0,2[$, où $f: x \mapsto e^{-\sqrt{x}}$. On pose $c_n = \frac{f^{(n)}(1)}{n!}$

- 1. Calculer c_1 et c_2
- 2. Montrer que f est solution sur $]0, +\infty[$ de l'équation différentielle

(E)
$$4xy''(x) + 2y'(x) - y(x) = 0$$
.

- 3. Montrer qu'il existe des fractions rationnelles φ et ψ qu'on précisera telles pour tout entier naturel n: $c_{n+2} = \varphi(n)c_{n+1} + \psi(n)c_n$.
- 4. Montrer que pour tout entier naturel $n: |c_n| \le 1$. Que pouvez-vous en déduire sur le rayon de convergence de la série entière $\sum c_n x^n$?
- 5. Soit $S: x \longmapsto \sum_{n=0}^{\infty} c_n (x-1)^n$. Montrer que S est de classe C^2 sur]0,2[et que S est solution de (E) sur]0,2[.
- 6. Montrer que $f(x) = \sum_{n=0}^{\infty} c_n (x-1)^n$.

Exercice 13

Extrait de concours CCP MP07

On considère $f(x)=\sum_{n=0}^{\infty}a_nx^n$ la somme d'une série entière de rayon de convergence R>0.

- 1. Déterminer le rayon de convergence de la série $\sum \frac{a_n}{n!} x^n$. On notera φ sa somme.
- 2. Montrer que pour tout $x \in]-R, R[, f(x) = \int_0^{+\infty} e^{-t} \varphi(xt) dt.$

Exercice 1

RÈGLE DE RAABE-DUHAMEL ET APPLICATIONS

Partie A : Règle de Raabe-Duhamel

Soit $(u_n)_{n\geq n_0}$ une suite de réels strictement positifs telle qu'il existe un réel λ vérifiant :

$$\forall n \geq n_0, \ \frac{u_{n+1}}{u_n} = 1 - \frac{\lambda}{n} + o\left(\frac{1}{n}\right)$$

- 1. Prouver que si $\lambda < 0$, alors la série $\sum u_n$ diverge.
- 2. Soit β un réel quelconque et $v_n = \frac{1}{n\beta}$. Montrer que $\frac{u_{n+1}}{u_n} \frac{v_{n+1}}{v_n} = \frac{\mu}{n} + o\left(\frac{1}{n}\right)$ où μ est un réel, indépendant de n, à déterminer.
- 3. On suppose que $\lambda > 1$. On se propose de démontrer que la série $\sum u_n$ converge. On choisit β tel que $\lambda > \beta > 1$.

- a. Justifier l'existence d'un entier naturel N tel que, pour $n \geq N$, on ait $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$.
- b. Déterminer un réel positif K, indépendant de n, tel que pour $n \ge N$, on ait $u_n \le Kv_n$.
- c. Prouver que lé série $\sum u_n$ converge.
- 4. On suppose que $0 \le \lambda < 1$. Démontrer par un raisonnement analogue à celui fait à la question précédente que la série $\sum u_n$ diverge (on choisira β de manière à ce que la série $\sum v_n$ diverge et que ceci implique la divergence de la série $\sum u_n$).
- 5. Pour $n \ge 2$, on pose $x_n = \frac{1}{n}$ et $y_n = \frac{1}{n \ln(n)^2}$. Déterminer la nature des séries $\sum x_n$ et $\sum y_n$ et en déduire que le cas $\lambda = 1$ est un cas douteux de la règle de Raabe-Duhamel.

Partie B : Applications

Les trois questions qui suivent sont indépendantes les unes des autres et sont des applications directes ou partielles de la règle de Raabe-Duhamel.

- 1. Pour $n \ge 2$, on pose $w_n = \sqrt{(n-1)!} \prod_{k=1}^{n-1} \sin\left(\frac{1}{\sqrt{k}}\right)$. Déterminer la nature de la série $\sum_{k=1}^{n} w_k$.
- 2. Pour $n \ge 1$, on considère l'intégrale généralisée $I_n = \int_0^{+\infty} \frac{dt}{(t^4+1)^n}$.
 - a. Montrer que cette intégrale généralisée converge.
 On note *I_n* sa valeur.
 - b. Établir que $I_n=4n(I_n-I_{n+1})$. En déduire la nature de la série $\sum I_n$.
- 3. Soit α un réel donné n'appartenant pas à l'ensemble des entiers naturels. On pose

desentiers natureis. On pose
$$a_0=1, \ \forall n\geq 1, \ a_n=\frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!},$$
 $S(x)=\sum_{n=0}^{+\infty}a_nx^n.$

- a. Indiquer le rayon de convergence R de la série entière $\sum a_n x^n$, et pour $x \in]-R, R[$, la valeur de S(x).
- b. Utiliser la règle de Raabe-Duhamel pour montrer que la série $\sum a_n$ est absolument convergente si et seulement si $\alpha > 0$.
- c. Montrer que si $\alpha > 0$, S est continue sur [-R, R] et établir que

$$\sum_{n=0}^{+\infty} a_n = 2^{\alpha} \text{ et } \sum_{n=0}^{+\infty} (-1)^n a_n = 0$$

- d. Montrer que si $\alpha < -1$, la série $\sum a_n$ diverge.
- e. On suppose que $-1 < \alpha < 0$.
 - i. Prouver que $\lim_{n\to +\infty} \ln(|a_n|) = -\infty$.
 - ii. Montrer que la série $\sum a_n$ converge et calculer sa somme.

•••••

MP 2/2 TD de Mathématiques